103 research outputs found

    Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution

    Get PDF
    BACKGROUND: The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. RESULTS: We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. CONCLUSIONS: Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates

    Imperfection works: Survival, transmission and persistence in the system of Heliothis virescens ascovirus 3h (HvAV-3h), Microplitis similis and Spodoptera exigua

    Get PDF
    Ascoviruses are insect-specific large DNA viruses that mainly infect noctuid larvae, and are transmitted by parasitoids in the fields. Heliothis virescens ascovirus 3h (HvAV-3h) has been recently isolated from Spodoptera exigua, without parasitoid vector identified previously. Here we report that Microplitis similis, a solitary endoparasitoid wasp, could transmit HvAV-3h between S. exigua larvae in the laboratory. When the female parasitoid wasp acquired the virus and served as a vector, the period of virion viability on the ovipositor was 4.1 ± 1.4 days. Infected host larvae were still acceptable for egg laying by parasitoids, and the parasitoids thereafter transmitted virus to healthy hosts. Virus acquisition occurred only from donor hosts between 3 and 9 days post infection. The peak of virus acquisition (80.9 ± 6.3%) was found when M. similis wasps oviposited in larvae that had been inoculated with the virus 7 days previously. When virus infection of the host took place during the life cycle of the parasitoid wasp, it caused 1- to 4-day-old immature parasitoids death in the host, whilst a small proportion of 5- to 6-day-old and the majority of 7-day-old parasitoids larvae survived from the virus-infected hosts. Viral contamination did not reduce the life span or fecundity of female M. similis

    Quality of life in patients with various Barrett's esophagus associated health states

    Get PDF
    BACKGROUND: The management of Barrett's esophagus (BE), particularly high grade dysplasia (HGD), is an area of much debate and controversy. Surgical esophagectomy, intensive endoscopic surveillance and mucosal ablative techniques, especially photodynamic therapy (PDT), have been proposed as possible management strategies. The purpose of this study was to determine the health related quality of life associated with Barrett's esophagus and many of the pivotal health states associated with Barrett's HGD management. METHODS: 20 patients with Barrett's esophagus were enrolled in a pilot survey study at a large urban hospital. The utility of Barrett's esophagus without dysplasia (current health state) as well as various health states associated with HGD management (hypothetical states as the subject did not have HGD) were measured using a validated health utility instrument (Paper Standard Gamble). These specific health states were chosen for the study because they are considered pivotal in Barrett's HGD decision making. Information regarding Barrett's HGD was presented to the subject in a standardized format that was designed to be easily comprehendible. RESULTS: The average utility scores (0–1 with 0 = death and 1 = perfect health) for the various Barrett's esophagus associated states were: BE without dysplasia-0.95; Post-esophagectomy for HGD with dysphagia-0.92; Post-PDT for HGD with recurrence uncertainty-0.93; Post-PDT for HGD with recurrence uncertainty and dysphagia-0.91; Intensive endoscopic surveillance for HGD-0.90. CONCLUSION: We present the scores for utilities associated with Barrett's esophagus as well as various states associated with the management of HGD. The results of our study may be useful in advising patients and providers regarding expected outcomes of the various HGD management strategies as well as providing utility scores for future cost-effectiveness analyses

    Cortical recovery of swallowing function in wound botulism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Botulism is a rare disease caused by intoxication leading to muscle weakness and rapidly progressive dysphagia. With adequate therapy signs of recovery can be observed within several days. In the last few years, brain imaging studies carried out in healthy subjects showed activation of the sensorimotor cortex and the insula during volitional swallowing. However, little is known about cortical changes and compensation mechanisms accompanying swallowing pathology.</p> <p>Methods</p> <p>In this study, we applied whole-head magnetoencephalography (MEG) in order to study changes in cortical activation in a 27-year-old patient suffering from wound botulism during recovery from dysphagia. An age-matched group of healthy subjects served as control group. A self-paced swallowing paradigm was performed and data were analyzed using synthetic aperture magnetometry (SAM).</p> <p>Results</p> <p>The first MEG measurement, carried out when the patient still demonstrated severe dysphagia, revealed strongly decreased activation of the somatosensory cortex but a strong activation of the right insula and marked recruitment of the left posterior parietal cortex (PPC). In the second measurement performed five days later after clinical recovery from dysphagia we found a decreased activation in these two areas and a bilateral cortical activation of the primary and secondary sensorimotor cortex comparable to the results seen in a healthy control group.</p> <p>Conclusion</p> <p>These findings indicate parallel development to normalization of swallowing related cortical activation and clinical recovery from dysphagia and highlight the importance of the insula and the PPC for the central coordination of swallowing. The results suggest that MEG examination of swallowing can reflect short-term changes in patients suffering from neurogenic dysphagia.</p

    The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates

    Get PDF
    <p/> <p>Background</p> <p>Stearoyl-CoA desaturases (SCDs) are key enzymes involved in <it>de novo </it>monounsaturated fatty acid synthesis. They catalyze the desaturation of saturated fatty acyl-CoA substrates at the delta-9 position, generating essential components of phospholipids, triglycerides, cholesterol esters and wax esters. Despite being crucial for interpreting SCDs roles across species, the evolutionary history of the SCD gene family in vertebrates has yet to be elucidated, in particular their isoform diversity, origin and function. This work aims to contribute to this fundamental effort.</p> <p>Results</p> <p>We show here, through comparative genomics and phylogenetics that the SCD gene family underwent an unexpectedly complex history of duplication and loss events. Paralogy analysis hints that SCD1 and SCD5 genes emerged as part of the whole genome duplications (2R) that occurred at the stem of the vertebrate lineage. The SCD1 gene family expanded in rodents with the parallel loss of SCD5 in the Muridae family. The SCD1 gene expansion is also observed in the Lagomorpha although without the SCD5 loss. In the amphibian <it>Xenopus tropicalis </it>we find a single SCD1 gene but not SCD5, though this could be due to genome incompleteness. In the analysed teleost species no SCD5 is found, while the surrounding SCD5-less locus is conserved in comparison to tetrapods. In addition, the teleost SCD1 gene repertoire expanded to two copies as a result of the teleost specific genome duplication (3R). Finally, we describe clear orthologues of SCD1 and SCD5 in the chondrichthian, <it>Scyliorhinus canicula</it>, a representative of the oldest extant jawed vertebrate clade. Expression analysis in <it>S. canicula </it>shows that whilst SCD1 is ubiquitous, SCD5 is mainly expressed in the brain, a pattern which might indicate an evolutionary conserved function.</p> <p>Conclusion</p> <p>We conclude that the SCD1 and SCD5 genes emerged as part of the 2R genome duplications. We propose that the evolutionary conserved gene expression between distinct lineages underpins the importance of SCD activity in the brain (and probably the pancreas), in a yet to be defined role. We argue that an expression independent of an external stimulus, such as diet induced activity, emerged as a novel function in vertebrate ancestry allocated to the SCD5 isoform in various tissues (e.g. brain and pancreas), and it was selectively maintained throughout vertebrate evolution.</p

    Evolutionary Patterning: A Novel Approach to the Identification of Potential Drug Target Sites in Plasmodium falciparum

    Get PDF
    Malaria continues to be the most lethal protozoan disease of humans. Drug development programs exhibit a high attrition rate and parasite resistance to chemotherapeutic drugs exacerbates the problem. Strategies that limit the development of resistance and minimize host side-effects are therefore of major importance. In this study, a novel approach, termed evolutionary patterning (EP), was used to identify suitable drug target sites that would minimize the emergence of parasite resistance. EP uses the ratio of non-synonymous to synonymous substitutions (ω) to assess the patterns of evolutionary change at individual codons in a gene and to identify codons under the most intense purifying selection (ω≤0.1). The extreme evolutionary pressure to maintain these residues implies that resistance mutations are highly unlikely to develop, which makes them attractive chemotherapeutic targets. Method validation included a demonstration that none of the residues providing pyrimethamine resistance in the Plasmodium falciparum dihydrofolate reductase enzyme were under extreme purifying selection. To illustrate the EP approach, the putative P. falciparum glycerol kinase (PfGK) was used as an example. The gene was cloned and the recombinant protein was active in vitro, verifying the database annotation. Parasite and human GK gene sequences were analyzed separately as part of protozoan and metazoan clades, respectively, and key differences in the evolutionary patterns of the two molecules were identified. Potential drug target sites containing residues under extreme evolutionary constraints were selected. Structural modeling was used to evaluate the functional importance and drug accessibility of these sites, which narrowed down the number of candidates. The strategy of evolutionary patterning and refinement with structural modeling addresses the problem of targeting sites to minimize the development of drug resistance. This represents a significant advance for drug discovery programs in malaria and other infectious diseases

    Vertebrate Vitellogenin Gene Duplication in Relation to the “3R Hypothesis”: Correlation to the Pelagic Egg and the Oceanic Radiation of Teleosts

    Get PDF
    The spiny ray-finned teleost fishes (Acanthomorpha) are the most successful group of vertebrates in terms of species diversity. Their meteoric radiation and speciation in the oceans during the late Cretaceous and Eocene epoch is unprecedented in vertebrate history, occurring in one third of the time for similar diversity to appear in the birds and mammals. The success of marine teleosts is even more remarkable considering their long freshwater ancestry, since it implies solving major physiological challenges when freely broadcasting their eggs in the hyper-osmotic conditions of seawater. Most extant marine teleosts spawn highly hydrated pelagic eggs, due to differential proteolysis of vitellogenin (Vtg)-derived yolk proteins. The maturational degradation of Vtg involves depolymerization of mainly the lipovitellin heavy chain (LvH) of one form of Vtg to generate a large pool of free amino acids (FAA 150–200 mM). This organic osmolyte pool drives hydration of the ooctye while still protected within the maternal ovary. In the present contribution, we have used Bayesian analysis to examine the evolution of vertebrate Vtg genes in relation to the “3R hypothesis” of whole genome duplication (WGD) and the functional end points of LvH degradation during oocyte maturation. We find that teleost Vtgs have experienced a post-R3 lineage-specific gene duplication to form paralogous clusters that correlate to the pelagic and benthic character of the eggs. Neo-functionalization allowed one paralogue to be proteolyzed to FAA driving hydration of the maturing oocytes, which pre-adapts them to the marine environment and causes them to float. The timing of these events matches the appearance of the Acanthomorpha in the fossil record. We discuss the significance of these adaptations in relation to ancestral physiological features, and propose that the neo-functionalization of duplicated Vtg genes was a key event in the evolution and success of the teleosts in the oceanic environment

    Consumption of a soy drink has no effect on cognitive function but may alleviate vasomotor symptoms in post-menopausal women; a randomised trial

    Get PDF
    Purpose: Cognitive decline is commonly reported during the menopausal transition, with memory and attention being particularly affected. The aim of this study was to investigate the effects of a commercially available soy drink on cognitive function and menopausal symptoms in post-menopausal women. Methods: 101 post-menopausal women, aged 44–63 years, were randomly assigned to consume a volume of soy drink providing a low (10 mg/day; control group), medium (35 mg/day), or high (60 mg/day) dose of isoflavones for 12 weeks. Cognitive function (spatial working memory, spatial span, pattern recognition memory, 5-choice reaction time, and match to sample visual search) was assessed using CANTAB pre- and post-the 12 week intervention. Menopausal symptoms were assessed using Greene’s Climacteric Scale. Results: No significant differences were observed between the groups for any of the cognitive function outcomes measured. Soy drink consumption had no effect on menopausal symptoms overall; however, when women were stratified according to the severity of vasomotor symptoms (VMS) at baseline, women with more severe symptoms at baseline in the medium group had a significant reduction (P = 0.001) in VMS post-intervention (mean change from baseline score: − 2.15 ± 1.73) in comparison to those with less severe VMS (mean change from baseline score: 0.06 ± 1.21). Conclusions: Soy drink consumption had no effect on cognitive function in post-menopausal women. Consumption of ~ 350 ml/day (35 mg IFs) for 12 weeks significantly reduced VMS in those with more severe symptoms at baseline. This finding is clinically relevant as soy drinks may provide an alternative, natural, treatment for alleviating VMS, highly prevalent among western women

    Evolution of a New Function by Degenerative Mutation in Cephalochordate Steroid Receptors

    Get PDF
    Gene duplication is the predominant mechanism for the evolution of new genes. Major existing models of this process assume that duplicate genes are redundant; degenerative mutations in one copy can therefore accumulate close to neutrally, usually leading to loss from the genome. When gene products dimerize or interact with other molecules for their functions, however, degenerative mutations in one copy may produce repressor alleles that inhibit the function of the other and are therefore exposed to selection. Here, we describe the evolution of a duplicate repressor by simple degenerative mutations in the steroid hormone receptors (SRs), a biologically crucial vertebrate gene family. We isolated and characterized the SRs of the cephalochordate Branchiostoma floridae, which diverged from other chordates just after duplication of the ancestral SR. The B. floridae genome contains two SRs: BfER, an ortholog of the vertebrate estrogen receptors, and BfSR, an ortholog of the vertebrate receptors for androgens, progestins, and corticosteroids. BfSR is specifically activated by estrogens and recognizes estrogen response elements (EREs) in DNA; BfER does not activate transcription in response to steroid hormones but binds EREs, where it competitively represses BfSR. The two genes are partially coexpressed, particularly in ovary and testis, suggesting an ancient role in germ cell development. These results corroborate previous findings that the ancestral steroid receptor was estrogen-sensitive and indicate that, after duplication, BfSR retained the ancestral function, while BfER evolved the capacity to negatively regulate BfSR. Either of two historical mutations that occurred during BfER evolution is sufficient to generate a competitive repressor. Our findings suggest that after duplication of genes whose functions depend on specific molecular interactions, high-probability degenerative mutations can yield novel functions, which are then exposed to positive or negative selection; in either case, the probability of neofunctionalization relative to gene loss is increased compared to existing models

    The evolutionary significance of polyploidy

    Get PDF
    Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity
    corecore