1,081 research outputs found

    High incidence of Angina pectoris in patients treated with 5-fluorouracil - A planned surveillance study with 102 patients

    Get PDF
    Objective: Angina pectoris, arrhythmic sudden death and myocardial infarction, all these cardiac events have occasionally been reported during 5-fluorouracil (5-FU) chemotherapy. Underlying mechanisms leading to these events are unknown; damage to the myocytes or vasospasms have been discussed. Methods: 102 consecutive and unselected patients were monitored with 12-lead ECG, echocardiography and radionuclide ventriculography prior to the first cycle of 5-FU chemotherapy and 3 months from baseline. Results: 19% of the patients developed reversible symptoms of angina pectoris during treatment which lasted up to 12 h after cessation of the infusion. Most of the 19 patients showed corresponding ECG changes. 6 out of the 19 patients with severe angina pectoris had subsequent coronary angiography. In none of these patients the coronary angiography showed coronary artery disease, but it showed low ventricular function (ejection fraction <50%) in 2 patients. The ejection fraction did not increase overtime. Arrhythmias were screened for with Holter monitoring during 5-FU chemotherapy. The frequency of bradycardia and ventricular extrasystoles increased significantly (p < 0.05) during treatment compared to arrhythmias in Holter monitoring 3 months later. Furthermore the Qtc time in the ECG 3 months later was significantly prolonged (p < 0.05) compared to baseline values. Conclusions:The incidence of angina pectoris in patients during 5-FU treatment seems higher than previously suspected. As myocardial ischemia can be fatal, attentiveness to these symptoms and immediate treatment are crucial. Copyright (C) 2003 S. Karger AG, Basel

    Wireless distance estimation with low-power standard components in wireless sensor nodes

    Full text link
    In the context of increasing use of moving wireless sensor nodes the interest in localizing these nodes in their application environment is strongly rising. For many applications, it is necessary to know the exact position of the nodes in two- or three-dimensional space. Commonly used nodes use state-of-the-art transceivers like the CC430 from Texas Instruments with integrated signal strength measurement for this purpose. This has the disadvantage, that the signal strength measurement is strongly dependent on the orientation of the node through the antennas inhomogeneous radiation pattern as well as it has a small accuracy on long ranges. Also, the nodes overall attenuation and output power has to be calibrated and interference and multipath effects appear in closed environments. Another possibility to trilaterate the position of a sensor node is the time of flight measurement. This has the advantage, that the position can also be estimated on long ranges, where signal strength methods give only poor accuracy. In this paper we present an investigation of the suitability of the state-of-the-art transceiver CC430 for a system based on time of flight methods and give an overview of the optimal settings under various circumstances for the in-field application. For this investigation, the systematic and statistical errors in the time of flight measurements with the CC430 have been investigated under a multitude of parameters. Our basic system does not use any additional components but only the given standard hardware, which can be found on the Texas Instruments evaluation board for a CC430. Thus, it can be implemented on already existent sensor node networks by a simple software upgrade.Comment: 8 pages, Proceedings of the 14th Mechatronics Forum International Conference, Mechatronics 201

    Bidirectional irradiance transposition based on the Perez model

    Get PDF
    The Perez irradiance model offers a practical representation of solar irradiance by considering the sky hemisphere as a three-part geometrical framework, namely, the circumsolar disc, the horizon band and the isotropic background. Furthermore, the simplified Perez diffuse irradiance model, commonly known as the Perez transposition model, is one of the most widely adopted models in tilted irradiance modeling. Although the set of model coefficients reported by Perez et al. (1990) is considered to be at an asymptotic level of optimization, later analyses have shown that coefficients which are adjusted to local conditions may perform better than the original set.&lt;p&gt;&lt;/p&gt; The model coefficients can be adjusted locally based on multiple datasets of diffuse and global irradiance on tilted and horizontal planes. In this paper, we present a different approach to adjust the coefficients, by using only measurements of global irradiance on tilted and horizontal planes from a tropical climate site, Singapore. A complete set of mathematical solutions to the inverse problem, i.e., irradiance transposition from tilt to horizontal, is also proposed. The data can then be used to generate irradiance maps from in-plane irradiance measurements at photovoltaics (PV) systems. Such maps provide relevant information for PV grid integration.&lt;p&gt;&lt;/p&gt

    Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters

    Get PDF
    Photonic quantum technologies are on the verge offinding applications in everyday life with quantum cryptography andquantum simulators on the horizon. Extensive research has beencarried out to identify suitable quantum emitters and single epitaxialquantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangledphoton-pairs. In order to build up quantum networks, it is essentialto interface remote quantum emitters. However, this is still anoutstanding challenge, as the quantum states of dissimilar“artificialatoms”have to be prepared on-demand with highfidelity and thegenerated photons have to be made indistinguishable in all possibledegrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51±5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting forthefirst time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation ofhighly indistinguishable (visibility of 71±9%) entangled photon-pairs (fidelity of 90±2%), enables push-button biexciton statepreparation (fidelity of 80±2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustnessagainst environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeatersand complex multiphoton entanglement experiments involving dissimilar artificial atom

    The rapid evolution of the exciting star of the Stingray Nebula

    Get PDF
    SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed UV and optical spectra, taken during 1988-2013, allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. We find that the central star has steadily increased its effective temperature from 38kK in 1988 to a peak value of 60kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log (dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from 1800km/s to 2800km/s. Since around 2002, the star stopped heating and has cooled down again to 55kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 Msun). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&

    Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

    Get PDF
    The development of scalable sources of non-classical light is fundamental to unlocking thetechnological potential of quantum photonics. Semiconductor quantum dots are emerging asnear-optimal sources of indistinguishable single photons. However, their performance assources of entangled-photon pairs are still modest compared to parametric down converters.Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shownnon-optimal levels of entanglement and indistinguishability. For quantum networks, bothcriteria must be met simultaneously. Here, we show that this is possible with a system thathas received limited attention so far: GaAs quantum dots. They can emit triggered polar-ization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguish-ability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity(0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dotentanglement sources in future quantum technologie

    A far-UV survey of three hot, metal-polluted white dwarf stars: WD0455-282, WD0621-376, and WD2211-495

    Get PDF
    Using newly obtained high-resolution data (R1×105R\sim{1\times{10}^{5}}) from the \textit{Hubble Space Telescope}, and archival UV data from the \textit{Far Ultraviolet Spectroscopic Explorer} we have conducted a detailed UV survey of the three hot, metal-polluted white dwarfs WD0455-282, WD0621-376, and WD2211-495. Using bespoke model atmospheres we measured TeffT_{\mathrm{eff}}, log gg, and photospheric abundances for these stars. In conjunction with data from Gaia we measured masses, radii, and gravitational redshift velocities for our sample of objects. We compared the measured photospheric abundances with those predicted by radiative levitation theory, and found that the observed Si abundances in all three white dwarfs, and the observed Fe abundances in WD0621-376 and WD2211-495, were larger than those predicted by an order of magnitude. These findings imply not only an external origin for the metals, but also ongoing accretion, as the metals not supported by radiative levitation would sink on extremely short timescales. We measured the radial velocities of several absorption features along the line of sight to the three objects in our sample, allowing us to determine the velocities of the photospheric and interstellar components along the line of sight for each star. Interestingly, we made detections of circumstellar absorption along the line of sight to WD0455-282 with three velocity components. To our knowledge, this is the first such detection of multi-component circumstellar absorption along the line of sight to a white dwarf.Comment: 19 pages, 23 figures, 8 tables. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ
    corecore