818 research outputs found

    Data mining reactor fuel grab load trace data to support nuclear core condition monitoring

    Get PDF
    A critical component of an advanced-gas cooled reactor (AGR) station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. As the core cannot be replaced the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. However, during weekly refueling activities measurements are taken from the core for protection and control purposes. It is shown in this paper that these measurements may be interpreted for condition monitoring purposes, thus potentially providing information relating to core condition on a more frequent basis. This paper describes the data-mining approach adopted to analyze this data and also describes a software system designed and implemented to support this process. The use of this software to develop a model of expected behavior based on historical data, which may highlight events containing unusual features possibly indicative of brick cracking, is also described. Finally, the implementation of this newly acquired understanding in an automated analysis system is described

    Growth of oriented C11b MoSi2 bicrystals using a modified Czochralski technique

    Get PDF
    Oriented bicrystals of pure C11b MoSi2 have been grown in a tri-arc furnace using the Czochralski technique. Two single crystal seeds were used to initiate the growth. Each seed had the orientation intended for one of the grains of the bicrystals, which resulted in a 60° twist boundary on the (110) plane. Seeds were attached to a water-cooled seed rod, which was pulled at 120 mm/h with the seed rod rotating at 45 rpm. The water- cooled copper hearth was counter-rotated at 160 rpm. Asymmetric growth ridges associated with each seed crystal were observed during growth and confirmed the existence of a bicrystal. It was also found that careful alignment of the seeds was needed to keep the grain boundary from growing out of the boule. The resulting boundary was characterized by imaging and crystallographic techniques in a scanning electron microscope. The boundary was found to be fairly sharp and the misorientation between the grains remained within 2° from the disorientation between the seeds

    Band structure model of magnetic coupling in semiconductors

    Full text link
    We present a unified band structure model to explain magnetic ordering in Mn-doped semiconductors. This model is based on the pp-dd and dd-dd level repulsions between the Mn ions and host elements and can successfully explain magnetic ordering observed in all Mn doped II-VI and III-V semiconductors such as CdTe, GaAs, ZnO, and GaN. This model, therefore, provides a simple guideline for future band structure engineering of magnetic semiconductors.Comment: 4+ pages, 5 figure

    Neuropsychological constraints to human data production on a global scale

    Get PDF
    Which are the factors underlying human information production on a global level? In order to gain an insight into this question we study a corpus of 252-633 Million publicly available data files on the Internet corresponding to an overall storage volume of 284-675 Terabytes. Analyzing the file size distribution for several distinct data types we find indications that the neuropsychological capacity of the human brain to process and record information may constitute the dominant limiting factor for the overall growth of globally stored information, with real-world economic constraints having only a negligible influence. This supposition draws support from the observation that the files size distributions follow a power law for data without a time component, like images, and a log-normal distribution for multimedia files, for which time is a defining qualia.Comment: to be published in: European Physical Journal

    Modeling transport through single-molecule junctions

    Full text link
    Non-equilibrium Green's functions (NEGF) formalism combined with extended Huckel (EHT) and charging model are used to study electrical conduction through single-molecule junctions. Analyzed molecular complex is composed of asymmetric 1,4-Bis((2'-para-mercaptophenyl)-ethinyl)-2-acetyl-amino-5-nitro-benzene molecule symmetrically coupled to two gold electrodes [Reichert et al., Phys. Rev. Lett. Vol.88 (2002), pp. 176804]. Owing to this model, the accurate values of the current flowing through such junction can be obtained by utilizing basic fundamentals and coherently deriving model parameters. Furthermore, the influence of the charging effect on the transport characteristics is emphasized. In particular, charging-induced reduction of conductance gap, charging-induced rectification effect and charging-generated negative value of the second derivative of the current with respect to voltage are observed and examined for molecular complex.Comment: 8 pages, 3 figure

    Current Profiles of Molecular Nanowires; DFT Green Function Representation

    Full text link
    The Liouville-space Green function formalism is used to compute the current density profile across a single molecule attached to electrodes. Time ordering is maintained in real, physical, time, avoiding the use of artificial time loops and backward propagations. Closed expressions for molecular currents, which only require DFT calculations for the isolated molecule, are derived to fourth order in the molecule/electrode coupling.Comment: 21 page

    Mining metrics for buried treasure

    Full text link
    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath one may be a wealth of further structure. This was beautifully described in a paper by M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat metrics -- one describing ordinary Minkowski spacetime and the other describing a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.Comment: 16 pages, no figures, minor grammatical changes, submitted to Proceedings of the Malcolm@60 Conference (London, July 2004

    Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling

    Get PDF
    Major multi-reservoir cascades represent a primary mechanism for dealing with hydrologic variability and extremes within institutionally complex river basins worldwide. These coordinated management processes fundamentally reshape water balance dynamics. Yet, multi-reservoir coordination processes have been largely ignored in the increasingly sophisticated representations of reservoir operations within large-scale hydrological models. The aim of this paper is twofold, namely (i) to provide evidence that the common modeling practice of parameterizing each reservoir in a cascade independently from the others is a significant approximation and (ii) to demonstrate potential unintended consequences of this independence approximation when simulating the dynamics of hydrological extremes in complex reservoir cascades. We explore these questions using the Water Balance Model, which features detailed representations of the human infrastructure coupled to the natural processes that shape water balance dynamics. It is applied to the Upper Snake River basin in the western US and its heavily regulated multi-reservoir cascade. We employ a time-varying sensitivity analysis that utilizes the method of Morris factor screening to explicitly track how the dominant release rule parameters evolve both along the cascade and in time according to seasonal high- and low-flow events. This enables us to address aim (i) by demonstrating how the progressive and cumulative dominance of upstream releases significantly dampens the ability of downstream reservoir rules' parameters to influence flow conditions. We address aim (ii) by comparing simulation results with observed reservoir operations during critical low-flow and high-flow events in the basin. Our time-varying parameter sensitivity analysis with the method of Morris clarifies how independent single-reservoir parameterizations and their tacit assumption of independence leads to reservoir release behaviors that generate artificial water shortages and flooding, whereas the observed coordinated cascade operations avoided these outcomes for the same events. To further explore the role of (non-)coordination in the large deviations from the observed operations, we use an offline multi-reservoir water balance model in which adding basic coordination mechanisms drawn from the observed emergency operations is sufficient to correct the deficiencies of the independently parameterized reservoir rules from the hydrological model. These results demonstrate the importance of understanding the state–space context in which reservoir releases occur and where operational coordination plays a crucial role in avoiding or mitigating water-related extremes. Understanding how major infrastructure is coordinated and controlled in major river basins is essential for properly assessing future flood and drought hazards in a changing world

    Failing boys and moral panics: perspectives on the underachievement debate

    Get PDF
    The paper re-examines the underachievement debate from the perspective of the ‘discourse of derision’ that surrounds much writing in this area. It considers the contradictions and inconsistencies which underpin much of the discourse – from a reinterpretation of examination scores, to the conflation of the concepts of ‘under’ and ‘low’ achievement and finally to the lack of consensus on a means of defining and measuring the term underachievement. In doing so, this paper suggests a more innovative approach for understanding, re-evaluating and perhaps rejecting the notion of underachievement

    On the lattice structure of probability spaces in quantum mechanics

    Full text link
    Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416
    • 

    corecore