191 research outputs found

    Contrasting Biogeographic and Diversification Patterns in Two Mediterranean-Type Ecosystems

    Get PDF
    The five Mediterranean regions of the world comprise almost 50,000 plant species (ca 20% of the known vascular plants) despite accounting for less than 5% of the world’s land surface. The ecology and evolutionary history of two of these regions, the Cape Floristic Region and the Mediterranean Basin, have been extensively investigated, but there have been few studies aimed at understanding the historical relationships between them. Here, we examine the biogeographic and diversification processes that shaped the evolution of plant diversity in the Cape and the Mediterranean Basin using a large plastid data set for the geophyte family Hyacinthaceae (comprising ca. 25% of the total diversity of the group), a group found mainly throughout Africa and Eurasia. Hyacinthaceae is a predominant group in the Cape and the Mediterranean Basin both in terms of number of species and their morphological and ecological variability. Using state-of-the-art methods in biogeography and diversification, we found that the Old World members of the family originated in sub-Saharan Africa at the Paleocene–Eocene boundary and that the two Mediterranean regions both have high diversification rates, but contrasting biogeographic histories. While the Cape diversity has been greatly influenced by its relationship with sub-Saharan Africa throughout the history of the family, the Mediterranean Basin had no connection with the latter after the onset of the Mediterranean climate in the region and the aridification of the Sahara. The Mediterranean Basin subsequently contributed significantly to the diversity of neighbouring areas, especially Northern Europe and the Middle East, whereas the Cape can be seen as a biogeographical cul-de-sac, with only a few dispersals toward sub-Saharan Africa. The understanding of the evolutionary history of these two important repositories of biodiversity would benefit from the application of the framework developed here to other groups of plants present in the two regions

    Historical Isolation versus Recent Long-Distance Connections between Europe and Africa in Bifid Toadflaxes (Linaria sect. Versicolores)

    Get PDF
    Background: Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma). Methodology/Principal Findings: We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnL UAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece. Conclusions/Significance: The current distribution of Linaria sect. Versicolores lineages is explained by both ancien

    Phylogeny and Biogeography of the Carnivorous Plant Family Sarraceniaceae

    Get PDF
    The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44–53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25–44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14–32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2–7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade

    Drivers of Cape Verde archipelagic endemism in keyhole limpets

    Get PDF
    Oceanic archipelagos are the ideal setting for investigating processes that shape species assemblages. Focusing on keyhole limpets, genera Fissurella and Diodora from Cape Verde Islands, we used an integrative approach combining molecular phylogenetics with ocean transport simulations to infer species distribution patterns and analyse connectivity. Dispersal simulations, using pelagic larval duration and ocean currents as proxies, showed a reduced level of connectivity despite short distances between some of the islands. It is suggested that dispersal and persistence driven by patterns of oceanic circulation favouring self-recruitment played a primary role in explaining contemporary species distributions. Mitochondrial and nuclear data revealed the existence of eight Cape Verde endemic lineages, seven within Fissurella, distributed across the archipelago, and one within Diodora restricted to Boavista. The estimated origins for endemic Fissurella and Diodora were 10.2 and 6.7 MY, respectively. Between 9.5 and 4.5 MY, an intense period of volcanism in Boavista might have affected Diodora, preventing its diversification. Having originated earlier, Fissurella might have had more opportunities to disperse to other islands and speciate before those events. Bayesian analyses showed increased diversification rates in Fissurella possibly promoted by low sea levels during Plio-Pleistocene, which further explain differences in species richness between both genera.FCT - Portuguese Science Foundation [SFRH/BPD/109685/2015, SFRH/BPD/111003/2015]; Norte Portugal Regional Operational Program (NORTE), under the PORTUGAL Partnership Agreement, through the European Regional Development Fund (ERDF) [MARINFO - NORTE-01-0145-FEDER-000031]info:eu-repo/semantics/publishedVersio

    A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy

    Get PDF
    A real-world newspaper distribution problem with recycling policy is tackled in this work. In order to meet all the complex restrictions contained in such a problem, it has been modeled as a rich vehicle routing problem, which can be more specifically considered as an asymmetric and clustered vehicle routing problem with simultaneous pickup and deliveries, variable costs and forbidden paths (AC-VRP-SPDVCFP). This is the first study of such a problem in the literature. For this reason, a benchmark composed by 15 instances has been also proposed. In the design of this benchmark, real geographical positions have been used, located in the province of Bizkaia, Spain. For the proper treatment of this AC-VRP-SPDVCFP, a discrete firefly algorithm (DFA) has been developed. This application is the first application of the firefly algorithm to any rich vehicle routing problem. To prove that the proposed DFA is a promising technique, its performance has been compared with two other well-known techniques: an evolutionary algorithm and an evolutionary simulated annealing. Our results have shown that the DFA has outperformed these two classic meta-heuristics

    Annual variations in the number of malaria cases related to two different patterns of Anopheles darlingi transmission potential in the Maroni area of French Guiana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With an Annual Parasite Incidence (API) of 132.1, in the high and moderate risks zones, the Maroni area of French Guiana has the second highest malaria incidence of South-America after Guyana (API = 183.54) and far above Brazil (API = 28.25). Malaria transmission is occurring despite strong medical assistance and active vector control, based on general WHO recommendations. This situation is generated by two main factors that are the social and cultural characteristics of this border area, where several ethnic groups are living, and the lack of understanding of transmission dynamics of the main mosquito vector, <it>Anopheles darlingi.</it> In this context, entomological data collected in two villages belonging to two different ethnic groups of the French border of the Maroni River, were retrospectively analysed to find out how the mosquito bionomics are related to the malaria transmission patterns.</p> <p>Methods</p> <p>Data were provided by human landing catches of mosquitoes carried out each month for two years in two villages belonging to two ethnic groups, the Amerindians Wayanas and the Aloukous of African origin. The mosquitoes were sorted by species, sex, date, hour and place of collection and processed for <it>Plasmodium sp</it>. parasite detection. The data were compiled to provide the following variables: human biting rates (HBR), parity rates (PR), numbers of infective bites (IB), entomological inoculation rates (EIR) and numbers of infected mosquitoes surviving enough to transmit (IMT). Spatial and temporal differences of variables between locations and during the night were tested by the Kruskall-Wallis analysis of variance to find out significant variations.</p> <p>Results</p> <p>The populations of the main mosquito vector <it>An. darlingi </it>showed significant variations in the spatial and temporal HBR/person/night and HBR/person/hour, IB/person/month and IB/person/hour, and IMT/village/night and IMT/village/hour. In the village of Loca (Aloukous), the IMT peaked from June to August with a very low transmission during the other months. The risks were higher during the first part of the night and an EIR of 10 infective bites per person and per year was estimated. In the village of Twenke (Wayanas), high level of transmission was reported all year with small peaks in March and October. The risk was higher during the second part of the night and an EIR of 5 infective bites per person and per year was estimated.</p> <p>Conclusion</p> <p>For the first time in the past 40 years, the mosquito bionomics was related to the malaria transmission patterns in French Guiana. The peak of malaria cases reported from August to October in the Maroni region is concomitant with the significant peak of <it>An. darlingi </it>IMT, reported from the village of Loca where transmission is higher. However, the persistent number of cases reported all year long may also be related to the transmission in the Amerindian villages. The <it>An. darlingi </it>bionomics for these two close populations were found significantly different and may explain why a uniform vector control method is inadequate. Following these findings, malaria prevention measures adapted to the local conditions are needed. Finally, the question of the presence of <it>An. darlingi </it>sub-species is raised.</p

    Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group.

    Get PDF
    BACKGROUND: The arthropod class Diplopoda is a mega-diverse group comprising >12,000 described millipede species. The history of taxonomic research within the group is tumultuous and, consequently, has yielded a questionable higher-level classification. Few higher-taxa are defined using synapomorphies, and the practice of single taxon descriptions lacking a revisionary framework has produced many monotypic taxa. Additionally, taxonomic and geographic biases render global species diversity estimations unreliable. We test whether the ordinal taxa of the Diplopoda are consistent with regards to underlying taxonomic diversity, attempt to provide estimates for global species diversity, and examine millipede taxonomic effort at a global geographic scale. METHODOLOGY/PRINCIPAL FINDINGS: A taxonomic distinctness metric was employed to assess uniformity of millipede ordinal taxa. We found that ordinal-level taxa are not uniform and are likely overinflated with higher-taxa when compared to related groups. Several methods of estimating global species richness were employed (Bayesian, variation in taxonomic productivity, extrapolation from nearly fully described taxa). Two of the three methods provided estimates ranging from 13,413-16,760 species. Variations in geographic diversity show biases to North America and Europe and a paucity of works on tropical taxa. CONCLUSIONS/SIGNIFICANCE: Before taxa can be used in an extensible way, they must be definable with respect to the diversity they contain and the diagnostic characters used to delineate them. The higher classification for millipedes is shown to be problematic from a number of perspectives. Namely, the ordinal taxa are not uniform in their underlying diversity, and millipedes appear to have a disproportionate number of higher-taxa. Species diversity estimates are unreliable due to inconsistent taxonomic effort at temporal, geographic, and phylogenetic scales. Lack of knowledge concerning many millipede groups compounds these issues. Diplopods are likely not unique in this regard as these issues may persist in many other diverse yet poorly studied groups

    Repeated long-distance dispersal and convergent evolution in hazel

    Get PDF
    Closely related species with a worldwide distribution provide an opportunity to understand evolutionary and biogeographic processes at a global scale. Hazel (Corylus) is an economically important genus of tree and shrub species found in temperate regions of Asia, North America and Europe. Here we use multiple nuclear and chloroplast loci to estimate a time-calibrated phylogenetic tree of the genus Corylus. We model the biogeographic history of this group and the evolutionary history of tree and shrub form. We estimate that multiple Corylus lineages dispersed long distances between Europe and Asia and colonised North America from Asia in multiple independent events. The geographic distribution of tree versus shrub form of species appears to be the result of 4–5 instances of convergent evolution in the past 25 million years. We find extensive discordance between our nuclear and chloroplast trees and potential evidence for chloroplast capture in species with overlapping ranges, suggestive of past introgression. The important crop species C. avellana is estimated to be closely related to C. maxima, C. heterophylla var. thunbergii and the Colurnae subsection. Our study provides a new phylogenetic hypothesis or Corylus and reveals how long-distance dispersal can shape the distribution of biodiversity in temperate plants

    Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes

    Get PDF
    The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program
    corecore