339 research outputs found

    Drug-drug interactions between palbociclib and proton pump inhibitors may significantly affect clinical outcome of metastatic breast cancer patients

    Get PDF
    BACKGROUND: Proton-pump-inhibitors (PPIs) are frequently prescribed for the management of anticancer drug-related gastrointestinal symptoms. Palbociclib is a weak base with pH-dependent solubility and potential drug-drug interaction at the absorption level may affect clinical pharmacokinetics. The current study was aimed at investigating the effect of co-administration of PPIs and palbociclib on progression-free survival (PFS) in metastatic breast cancer (mBC) patients. PATIENTS AND METHODS: Patients affected by estrogen receptor-positive, human epidermal growth factor receptor 2-negative mBC, who were candidates for first-line treatment with palbociclib, were enrolled in this retrospective observational study. Patients were defined as ‘no concomitant PPIs’ if no PPIs were administered during palbociclib treatment, and as ‘concomitant PPIs’ if the administration of PPIs covered the entire or not less than two-thirds of treatment with palbociclib. All clinical interventions were made according to clinical practice. RESULTS: A total of 112 patients were enrolled in the study; 56 belonged to the ‘no concomitant PPIs’ group and 56 to the ‘concomitant PPIs’ group. Seventy-one patients were endocrine-sensitive and received palbociclib and letrozole, and 43 were endocrine-resistant and were treated with palbociclib and fulvestrant. The most prescribed PPI was lansoprazole. Patients taking PPIs had a shorter PFS than those taking palbociclib and endocrine therapy alone (14.0 versus 37.9 months, P 2 hematological toxicities [Common Terminology Criteria for Adverse Events (CTCAE) scale]. CONCLUSIONS: The present study demonstrates that concomitant use of PPIs in mBC patients treated with palbociclib has a detrimental effect on PFS. Therefore, it is recommended to prescribe PPIs with caution in these patients, strictly adhering to the indications in the summary of product characteristics (RCP)

    Concomitant administration of proton pump inhibitors does not significantly affect clinical outcomes in metastatic breast cancer patients treated with ribociclib

    Get PDF
    Background: Gastric pH changes by proton-pump-inhibitors (PPIs) were found to affect progression-free survival (PFS) in metastatic breast cancer (mBC) patients treated with palbociclib. The current study was aimed at investigating whether the same effect could occur in patients treated with ribociclib. Patients and methods: Patients with hormone-positive/HER-2-negative mBC candidates for first-line treatment with ribociclib were enrolled in this retrospective-cohort study. Patients were classified as "no concomitant PPIs" or "concomitant PPIs"; PPI administration covered the entire or not less than 2/3 of treatment with ribociclib. All clinical interventions were made according to clinical practice. Results: A total of 128 patients were consecutively enrolled in the study; 78 belonged to the "no concomitant PPIs" group and 50 to the "concomitant PPIs" group. One hundred and six patients were endocrine-sensitive and received ribociclib and letrozole, while 22 were endocrine-resistant and were treated with ribociclib and ful-vestrant. The most prescribed PPI was lansoprazole. According to PFS, patients taking PPIs had a PFS almost superimposable to those assuming ribociclib and endocrine therapy alone (35.3 vs. 49.2 months, p = 0.594). No difference in PFS was observed in estrogen-sensitive or estrogen-resistant mBC in the presence or absence of concomitant PPI treatment (p = 0.852). No correlation with adverse events was found including grade>2 he-matological toxicities. Conclusions: The present study supports the hypothesis that the concomitant use of PPIs does not compromise the efficacy of ribociclib in a real-life setting

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 ÎŒ\mus at high frequency. A bias lower than 4 Όs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ

    Calibration and sensitivity of the Virgo detector during its second science run

    Full text link
    The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum Gravity (CQG), Corrigendum include

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
    • 

    corecore