9,698 research outputs found

    Distributed XQuery

    Get PDF
    XQuery is increasingly being used for ad-hoc integration of heterogeneous data sources that are logically mapped to XML. For example, scientists need to query multiple scientific databases, which are distributed over a large geographic area, and it is possible to use XQuery for that. However, the language currently supports only the data shipping query evaluation model (through the document() function): it fetches all data sources to a single server, then runs the query there. This is a major limitation for many applications, especially when some data sources are very large, or when a data source is only a virtual XML view over some other logical data model. We propose here a simple extension to XQuery that allows query shipping to be expressed in the language, in addition to data shipping

    A Framework for XML-based Integration of Data, Visualization and Analysis in a Biomedical Domain

    Get PDF
    Biomedical data are becoming increasingly complex and heterogeneous in nature. The data are stored in distributed information systems, using a variety of data models, and are processed by increasingly more complex tools that analyze and visualize them. We present in this paper our framework for integrating biomedical research data and tools into a unique Web front end. Our framework is applied to the University of Washington’s Human Brain Project. Specifically, we present solutions to four integration tasks: definition of complex mappings from relational sources to XML, distributed XQuery processing, generation of heterogeneous output formats, and the integration of heterogeneous data visualization and analysis tools

    Natural laminar flow nacelle for transport aircraft

    Get PDF
    The potential of laminar flow nacelles for reducing installed engine/nacelle drag was studied. The purpose was twofold: to experimentally verify a method for designing laminar flow nacelles and to determine the effect of installation on the extent of laminar flow on the nacelle and on the nacelle pressure distributions. The results of the isolated nacelle tests illustrated that laminar flow could be maintained over the desired length. Installing the nacelles on wing/pylon did not alter the extent of laminar flow occurring on the nacelles. The results illustrated that a significant drag reduction was achieved with this laminar flow design. Further drag reduction could be obtained with proper nacelle location and pylon contouring

    A performant XQuery to SQL translator

    Get PDF
    We describe a largely complete and efficient XQuery to SQL translation for XML publishing. Our translation supports the entire XQuery language, except for functions, if statements and upwards navigation axes. The system has three important properties. First, it preserves the correct XQuery semantics. This is accomplished by first translating XQuery into core-XQuery, using a complete XQuery implementation, Galax. Second, we optimize the resulting SQL queries. We develop a comprehensive framework for optimizing the XQuery to SQL translation, which is effective for a wide range of XQuery workloads. Third, our translation is platform independent. Our system achieves high degree of efficiency on a wide range of relational systems. This paper reports an extensive experimental validation on several XQuery workloads, using MySQL, PostgreSQL, and SQL Server, and compares this approach with five native XQuery engines: Galax (the newer, optimized version), Saxon, QizOpen, IMDB and Quexo

    Limits of optimal control yields achievable with quantum controllers

    Full text link
    In quantum optimal control theory, kinematic bounds are the minimum and maximum values of the control objective achievable for any physically realizable system dynamics. For a given initial state of the system, these bounds depend on the nature and state of the controller. We consider a general situation where the controlled quantum system is coupled to both an external classical field (referred to as a classical controller) and an auxiliary quantum system (referred to as a quantum controller). In this general situation, the kinematic bound is between the classical kinematic bound (CKB), corresponding to the case when only the classical controller is available, and the quantum kinematic bound (QKB), corresponding to the ultimate physical limit of the objective's value. Specifically, when the control objective is the expectation value of a quantum observable (a Hermitian operator on the system's Hilbert space), the QKBs are the minimum and maximum eigenvalues of this operator. We present, both qualitatively and quantitatively, the necessary and sufficient conditions for surpassing the CKB and reaching the QKB, through the use of a quantum controller. The general conditions are illustrated by examples in which the system and controller are initially in thermal states. The obtained results provide a basis for the design of quantum controllers capable of maximizing the control yield and reaching the ultimate physical limit.Comment: 10 pages, 5 figure

    A multilevel theoretical study to disclose the binding mechanisms of gold(III) bipyridyl compounds as selective aquaglyceroporin inhibitors

    Get PDF
    Structural studies have paved the avenue to a deeper understanding of aquaporins (AQPs), small ancient proteins providing efficient transmembrane pathways for water, small uncharged solutes such as glycerol, and possibly gas molecules. Despite the numerous studies, their roles in health and disease remain to be fully disclosed. The recent discovery of AuIII complexes as potent and selective inhibitors of aquaglyceroporin isoforms paves the way to their possible therapeutic application. The binding of the selective human AQP3 inhibitor, the cationic complex [Au(bipy)Cl2]+ (Aubipy), to the protein channel has been investigated here by means of a multi-level theoretical workflow that includes QM, MD and QM/MM approaches. The hydroxo complex was identified as the prevalent form of Aubipy in physiological media and its binding to AQP3 studied by MD. Both non-covalent and coordinative Aubipy–AQP3 adducts were simulated to probe their role in the modulation of water channel functionality. The electronic structures of representative Aubipy–AQP3 adducts were then analysed to unveil the role played by the metal moiety in their stabilisation. This study spotlights the overall importance of three key aspects for AQP3 inhibition: 1) water speciation of the AuIII complex, 2) stability of non-covalent adducts and 3) conformational changes induced within the pore by the coordinative binding of AuIII. The obtained results are expected to orient future developments in the design of isoform-selective AuIII inhibitors

    Missense Mutation R338W in ARHGEF9 in a Family with X-linked Intellectual Disability with Variable Macrocephaly and Macro-Orchidism

    Get PDF
    Non-syndromal X-linked intellectual disability (NS-XLID) represents a broad group of clinical disorders in which ID is the only clinically consistent manifestation. Although in many cases either chromosomal linkage data or knowledge of the >100 existing XLID genes has assisted mutation discovery, the underlying cause of disease remains unresolved in many families. We report the resolution of a large family (K8010) with NS-XLID, with variable macrocephaly and macro-orchidism. Although a previous linkage study had mapped the locus to Xq12-q21, this region contained too many candidate genes to be analyzed using conventional approaches. However, X-chromosome exome sequencing, bioinformatics analysis and segregation analysis revealed a novel missense mutation (c.1012C>T; p.R338W) in ARHGEF9. This gene encodes collybistin (CB), a neuronal GDP-GTP exchange factor previously implicated in several cases of XLID, as well as clustering of gephyrin and GABAA receptors at inhibitory synapses. Molecular modeling of the CB R338W substitution revealed that this change results in the substitution of a long electropositive side-chain with a large non-charged hydrophobic side-chain. The R338W change is predicted to result in clashes with adjacent amino acids (K363 and N335) and disruption of electrostatic potential and local folding of the PH domain, which is known to bind phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P). Consistent with this finding, functional assays revealed that recombinant CB CB2SH3- (R338W) was deficient in PI3P binding and was not able to translocate EGFP-gephyrin to submembrane microaggregates in an in vitro clustering assay. Taken together, these results suggest that the R338W mutation in ARHGEF9 is the underlying cause of NS-XLID in this family

    Double Parton Scattering Singularity in One-Loop Integrals

    Full text link
    We present a detailed study of the double parton scattering (DPS) singularity, which is a specific type of Landau singularity that can occur in certain one-loop graphs in theories with massless particles. A simple formula for the DPS singular part of a four-point diagram with arbitrary internal/external particles is derived in terms of the transverse momentum integral of a product of light cone wavefunctions with tree-level matrix elements. This is used to reproduce and explain some results for DPS singularities in box integrals that have been obtained using traditional loop integration techniques. The formula can be straightforwardly generalised to calculate the DPS singularity in loops with an arbitrary number of external particles. We use the generalised version to explain why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg community are not divergent at the DPS singular point, and point out that whilst all NMHV amplitudes are always finite, certain MHV amplitudes do contain a DPS divergence. It is shown that our framework for calculating DPS divergences in loop diagrams is entirely consistent with the `two-parton GPD' framework of Diehl and Schafer for calculating proton-proton DPS cross sections, but is inconsistent with the `double PDF' framework of Snigirev.Comment: 29 pages, 8 figures. Minor corrections and clarifications added. Version accepted for publication in JHE
    corecore