
A Framework for XML-based Integration of Data,

Visualization and Analysis in a Biomedical Domain

N. Bales, J. Brinkley, E. S. Lee, S. Mathur, C. Re, and D. Suciu

University of Washington

Abstract. Biomedical data are becoming increasingly complex and het-
erogeneous in nature. The data are stored in distributed information
systems, using a variety of data models, and are processed by increas-
ingly more complex tools that analyze and visualize them. We present in
this paper our framework for integrating biomedical research data and
tools into a unique Web front end. Our framework is applied to the Uni-
versity of Washington’s Human Brain Project. Specifically, we present
solutions to four integration tasks: definition of complex mappings from
relational sources to XML, distributed XQuery processing, generation of
heterogeneous output formats, and the integration of heterogeneous data
visualization and analysis tools.

1 Introduction

Modern biomedical data have an increasingly complex and heterogeneous na-
ture, and are generated by collaborative yet distributed environments. For both
technical and sociological reasons these complex data will often be stored, not
in centralized repositories, but in distributed information systems implemented
under a variety of data models. Similarly, as the data becomes more complex,
the tools to analyze and visualize them also become more complex, making it
difficult for individual users to install and maintain them.

The problem we are addressing is how to build a uniform Web interface that
(a) gives users integrated access to distributed data sources, (b) allows users to
formulate complex queries over the data without necessarily being competent in
a query language, (c) allows access to existing visualization tools which do not
need to be installed on the local workstation, and (d) allows control of existing
data analysis tools, both for data generation, and processing of query results.

Our specific application is the integration of data sources containing multi-
modality and heterogenous data describing language organization in the brain,
known as the University of Washington’s Human Brain Project [7]. The Web
front end is targeted towards sophisticated and demanding users (neuroscience
researchers). We examine in this paper the components that are needed to per-
form such a data integration task, and give a critical assessment of the available
XML tools for doing that.

We have identified a few data management problems that need to be ad-
dressed in order to achieve integration: complex mappings from relational sources

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Washington Structural Informatics Group Publications

https://core.ac.uk/display/9412313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to XML, distributed XQuery processing, graphical XQuery interfaces, genera-
tion of heterogeneous output formats, and integration of data visualization and
analysis tools. The main contribution in this paper is to describe our framework
for achieving the integration of data, queries, visualization, and analysis tools.
Specifically, we make the following contributions:

Complex Relational-to-XML Mapping In our experience, writing complex
mappings from relational data to XML data was one of the most labor inten-
sive tasks. We propose a simple extension to XQuery that greatly simplifies
the task of writing complex mappings.

Distributed XQuery We identify several weaknesses of the mediator model for
data integration, and propose an alternative, based on a distributed query

language. It consists of a simple extension to XQuery, called XQueryD [28],
which allows users to distribute computations across sites.

Heterogeneous Output Formats Users want to map the data into a variety
of formats, either for direct visualization, or in order to upload to other data
processing tools (spreadsheets, statistical analysis tools, etc). We describe a
simple interface to achieve that.

Heterogeneous Visualization Tools We propose an approach for integrating
multiple data visualization tools, allowing their outputs to be incorporated
into query answers.

2 Application Description

The driving application for this work is the University of Washington Integrated
Brain Project, the goal of which is to develop methods for managing, sharing, in-
tegrating and visualizing complex, heterogeneous and multi-modality data about
the human brain, in the hope of gaining a greater understanding of brain func-
tion than could be achieved with a single modality alone [7]. This project is
part of the national Human Brain Project (HBP) [21], whose long-term goal is
to develop interlinked information systems to manage the exploding amount of
data that is being accumulated in neuroscience research.

Within the UW HBP the primary data are acquired in order to understand
language organization in the brain. Because each type of data is complex, we
have developed and are continuously developing independent tools for managing
each type, with the belief that each such tool will be useful to other researchers
with similar types of data, and with the aim of integrating the separate tools,
along with external tools, in a web-based data integration system that relies on
XML as the medium of data exchange.

The web-based integration system we are developing is called XBrain [35,
36]. The components that this system seeks to integrate include data sources,
visualization tools and analysis tools.

2.1 Data Sources

We describe here three of the data sources in XBrain, which illustrate data stored
in three different data models: relational, ontology, and XML.

A relational database: CSM (Cortical Stimulation Mapping) This is a
patient-oriented relational database stored in MySQL, which records data ob-
tained at the time of neurosurgery for epilepsy. The data primarily represent the
cortical locations of language processing in the brain, detected by noting errors
made by the patient during electrical stimulation of those areas. The database
also contains the file locations of image volumes, 3-D brain models, and other
data needed in order to reconstruct a model of the brain from MRI images, and
to use that model as a basis for calculating the locations of the language sites.
Data are entered by means of a web-based application [20], but only minimal
browse-like queries were supported by the legacy application. The database has
36 tables containing 103 patients, and is 8MB in size.

An ontology: FMA (Foundational Model of Anatomy) This ontology is
the product of a separate, major research project conducted over more than ten
years at the University of Washington [30]. The FMA is a large semantic network
containing over 70,000 concepts representing most of the structures in the body,
and 1.2 million relationships, such as part-of, is-a, etc. The FMA relates
to the CSM database through the names of anatomical brain regions where
the stimulation sites are located: e.g. FMA could be used to find neighboring,
contained, or containing regions of specific stimulation sites in CSM. The FMA
ontology is stored and managed in Protege1, which is a general purpose ontology
managing system, and does not support a query language. A separate project [27]
built a query interface to FMA, called OQAFMA, which supports queries written
in StruQL [15], a query language specifically designed for graphs.

An XML File: IM (Image Manager) As part of an anatomy teaching
project we have developed a tool for organizing teaching images [5]. Each image
has associated with it one or more annotation sets, consisting of one or more
annotations. An annotation consists of a closed polygon specified by a sequence
of image coordinates on the image and an anatomical name describing that
region. As in the CSM database, the names are taken from the FMA. In the
original project the data is stored in a relational database. For the purpose of
integrating it in XBrain we converted it into a single XML document, because
it is infrequently updated because it has a natural recursive structure. To query
it, we use the Galax [13] XQuery interpretor.

2.2 Visualization Tools

Many tools for Web-based visualization and interaction with both 2-D and 3-D
images have been developed, in our lab and elsewhere. For example, we have
developed interactive tools for 2-D images [6], and tools for 3-D visualization of
CSM and other functional language data mapped onto a 3-D model of a patient
or population brain [26]. These tools are being integrated as part of the XBrain
project. While each tool is designed to display a single image at a time, in XBrain
we allow users to integrate images generated by several visualization tools with
the data returned by queries.

1 http://protege.stanford.edu/

2.3 Analysis Tools

Finally, users are sophisticated, and they generally develop or use various analysis
tools to generate the data that are entered into the various data sources, or to
further process the results of a query. An example tool for the UW HBP is
the Visualization Brain Mapper (VBM) [19], which accepts a specification file
generated from the CSM database, then creates a mapping of stimulation sites
onto a generated 3-D model. A second example is our X-Batch program [18]
which provides a plugin to a popular functional image analysis program while
transparently writing to a backend database. These tools are being integrated
into XBrain, by having queries generate appropriate data formats for them.

2.4 The Problem

The UW HBP data sources and tools illustrate the increasingly complex and het-
erogenous nature of modern biomedical data, as well as the increasingly collab-
orative yet distributed environment in which they are generated. These complex
data are stored, not in a centralized repository, but in distributed information
systems implemented under a variety of data models. The tools to analyze and
visualize them are also quite complex, making it difficult for individual users to
install and maintain them. Thus, the problem we are addressing is how to build a
uniform Web interface that (a) gives users integrated access to distributed data
sources, (b) allows users to formulate complex queries over the data without
necessarily being competent in a query language, (c) allows access to existing
visualization tools which do not necessarily need to be installed on the local
workstation, and (d) allows control of existing data analysis tools, both for data
generation, and processing of query results. XBrain is our proposed framework
for addressing these problems.

3 The XBrain Integration Architecture

Our architecture is shown in Fig. 1. All sources store data in their native format
and have to map the data to XML when exported to the query processor. Most
mapped sources accept XQuery over their data, with one exception: OQAFMA
accepts StruQL queries, because the rich structure of the ontology describing all
of human anatomy requires a richer language than XQuery for recursive path
traversals in the ontology graph. The data from all sources are integrated by a
module supporting a distributed extension of the XQuery language (XQueryD).
This module sends queries to the local sources and integrates the resulting XML
data fragments. The resulting XML query answer can be presented to the user
in one of multiple formats: as a plain XML file, as a CSV (Comma Separated
Values) file, or a nested HTML file. In the latter case, the image anchors embed-
ded in the XML file are interpreted by calling the appropriate image generation
Webservices, and the resulting HTML pages together with complex images is
presented to the user. The user inputs queries expressed in XQueryD through a
JSP page. We describe the specific data management tasks next.

Fig. 1. The XBrain Integration Architecture.

4 Specific Data Management Tasks

4.1 Mappings to XML

We mapped the relational CSM database to XML using SilkRoute [11, 35]. To
define the map, one needs to write an XQuery program that maps the entire
relational database to a virtual XML document, called the public view. Users
query this view using XQuery, which SilkRoute translates to SQL, then converts
the answers back to XML. For example, the user query below finds the names
of all structures over all patients, in which a CSM error of type 2 (semantic
paraphasia) occurred at least once in one patient:

<results>
{for $trial in PublicView("Scrubbed.pv")/patient/surgery/csmstudy/trial
where $trial/trialcode/term/abbrev/text()="2"
return $trial/stimsite/name()
}

</results>

Here PublicView indicates the file containing the public view definition (a large
XQuery). SilkRoute translates the query automatically into a complex SQL
statement:

SELECT stimsite.name
FROM trial, csm, . . ., stimsite
WHERE term.type = ’CSM error code’ AND abbrev = ‘2’ AND . . .

ExprSingle ::= TblExpr | ... (* all expressions in XQuery remain here *)

TblExpr ::= NameClause WhereClause? OmitClause? RenameClause? ReturnClause?

NameClause ::= "table " TblName (" as " <NCName>)?
OmitClause ::= "omit " ColName (", " ColName)*
RenameClause ::= "rename " ColName as <NCName> (", " ColName as <NCName>)*
ReturnClause ::= "return " EnclosedExpr

TblName ::= <NCName>
ColName ::= <NCName>
FunctionCall ::= <QName "("> (ExprSingle ("," ExprSingle)*)? ")" ("limit" IntegerLiteral)?

Fig. 2. The Grammar for RXQuery

Writing the public view was a major task. For XBrain, it had 583 lines of
XQuery code, which was repetitive, boring to write, and error prone. We needed
a more efficient tool to write such mappings, in order to easily extend XBrain to
other sources. For that, we developed a simple extension to XQuery that allows
the easy specification of complex mappings from relational data to XML.

RXQuery: A Language for Mapping Relations to XML Our new lan-
guage allows users to concisely specify complex mappings from relational databases
to XML such that (1) default mappings are done automatically, by using the re-
lational database schema, and (2) the user can override the defaults and has the
full power of XQuery. The grammar is shown in Fig. 2. It extends the XQuery
syntax with seven new productions, by adding “table expressions”, TblExpr to
the types of expressions in the language. The RXQuery preprocessor takes as
input a relational database schema and an RXQuery expression and generates
an XQuery expression that represents a public view.

Example 1. We illustrate RXQuery with three examples, shown in Fig. 3. In
all of them we use a simple relational database schema consisting for the two
relations below, which are a tiny, highly simplified fragment of CSM:

patient(pid, name, dob, address)
surgery(sid, pid, date, surgeon)

Consider Q1 in Fig. 3 and its translation to XQuery. By default, every column
in the relational schema is mapped into an XML element with the same name.
Here CanonicalView() is a SilkRoute function that represents the canonical
view of the relational database.

Query Q2 illustrates the omit and the rename keywords that omit and/or
rename some of these attributes, and the where and the return clauses that
allow the user to restrict which rows in the table are to be exported in XML
and to add more subelements to each row. In Q2, the name column is omitted,
the dob column is exported as the @date-of-birth attribute, rather than the
default dob element, and an additional element age is computed for each row.

RXQuery is especially powerful when specifying complex, nested public views,
which is the typical case in practice. Q3 is a very simple illustration of this power.

RXQuery Translation to XQuery

Q1 table patient for $Patient in CanonicalView()/patient
return

<patient>
<pid> { $Patient/pid/text() } </pid>
<name> { $Patient/name/text() } </name>
<dob> { $Patient/dob/text() } </dob>
<address> { $Patient/address/text() } </address>

</patient>

Q2 table patient
omit name
rename dob as @date-of-birth

where $Patient/dob/text() < 1950
return

<age>
{ 2005 - $Patient/dob/text() }

</age>

for $Patient in CanonicalView()/patient
where $Patient/dob/text() < 1950
return

<patient date-of-birth = ‘‘$Patient/dob/text()’’>
<pid> { $Patient/pid/text() } </pid>
<address> { $Patient/address/text() } </address>
<age> { 2005 - $Patient/dob/text() } </age>

</patient>

Q3 table patient
return

table surgery omit pid
where $Patient/pid/text() =

$Surgery/pid/text()

for $Patient in CanonicalView()/patient
return

<patient>
<pid> { $Patient/pid/text() } </pid>
<name> { $Patient/name/text() } </name>
<dob> { $Patient/dob/text() } </dob>
<address> { $Patient/address/text() } </address>
{ for $Surgery in CanonicalView()/surgery

where $Patient/pid/text() = $Surgery/pid/text()
return <surgery>

<sid> $Surgery/sid/text() </sid>
<date> $Surgery/date/text() </date>
<surgeon> $Surgery/surgeon/text()
</surgeon>

</surgery>
</patient>

Fig. 3. Examples of RXQuery and their translations to XQuery.

Here, the nested subquery is a simple table expression, which is expanded au-
tomatically by the preprocessor into a complex subquery.

In addition to the features illustrated in the example, RXQuery includes
functions, which we have found to be important in specifying complex map-
pings, since parts of the relational database need to be included several times in
the XML document. The limit n clause (see Fig. 2) represents a limit on the
recursion depth, when the function is recursive: this allows us some limited form
recursive XML views over relational data (SilkRoute does not support recursive
XML structures).

One measure of effectiveness of RXQuery is its conciseness, since this is cor-
related to the readability and maintainability of the public views. Fig. 4 reports
the number of lines for two public views: for CSM and for the original version
of IM (which is in a relational database). The CSM public view became about
5 times smaller, shrinking from 583 lines in XQuery to 125 lines in RXQuery.
The IM public view shrank from an original XQuery with 1383 lines of code to
an RXQuery expression with only 151 lines. In both examples, the XQuery pub-
lic view generated automatically by the RXQuery preprocessor was only sightly
larger than the original manual public view.

PV for CSM:

Public View Lines Words Chars
XQuery(manual) 583 1605 28582
RXQuery(w/o functions) 141 352 4753
RXQuery(w/ functions) 125 303 4159
XQuery(generated) 634 1633 34979

PV for IM:

Public View Lines Words Chars
XQuery(manual) 1383 3419 64393
RXQuery(w/o functions) 381 1178 14987
RXQuery(w/ functions) 151 427 5603
XQuery(generated) 1427 3575 66105

Fig. 4. Two examples of large public views defined in RXQuery: on the CSM database
and on the original relational version of the IM (Image Manager) database. The tables
show the original, manual definition of the public view in XQuery, the definition in
RXQuery without functions, the same with functions, and the resulting, automaticallly
generated XQuery.

Mapping Other Data Sources to XML While most data sources can be
mapped to XML in a meaningful way, sometimes this is not possible. In such
cases we decided to keep the original data model, rather than massaging it to
an artificial XML structure. The Foundational Model of Anatomy (FMA) is a
rich ontology, which is best represented as a graph, not a tree. We kept its query
interface, OQAFMA, which uses StruQL as a query language and allows users
to express complex recursive navigation over the ontology graph. For example,
the StruQL query below returns all anatomical parts that contain the middle
part of the superior temporal gyrus:

WHERE Y->":NAME"->"Middle part of superior temporal gyrus",
X->"part"*->Y,
X->":NAME"->Parent

CREATE Concept(Parent);

The query computes a transitive closure of the part relationship. While the
query data model is best kept as a graph, the query answers can easily be mapped
back into XML. In our example, the answer returned by OQAFMA is:

<results> <Concept> <Ancestor>Neocortex</Ancestor> </Concept>
<Concept> <Ancestor>Telencephalon</Ancestor> </Concept>

.
</results>

Finally, native XML data are queried directly using XQuery. In our case, the
Image Manager data (IM) is stored in XML and queried using Galax [13]. The
following example finds all images annotated by the middle part of the superior

temporal gyrus:

for $image in document("image_db.xml")//image
where $image/annotation_set/image_annotation/name/text() =

"middle part of the superior temporal gyrus"
return 

4.2 Distributed XQuery Processing

The standard approach to data integration is based on a mediator, an architec-
ture proposed by Gio Wiederhold [38]. With this approach, a single mediator
schema is first described over all sources, and all local sources are mapped into
the mediated schema.

ExprSingle ::= "execute at" <URL> ["xquery" { ExprSingle } | "foreign" { String }]
("handle" <VAR>:<NAME-SPACE> <EXPR>)*

Fig. 5. Grammar for XQueryD

We found this approach too heavy duty for our purpose, for three reasons.
First, mediators are best suited in cases when the same concept appears in
several sources, and the mediated concept is the set union of the instance of
that concept at the sources. For example, BioMediator, a mediator-based data
integration project for genetic data [32], integrates several sources that have
many overlapping concepts: e.g. most sources have a gene class, and the mediator
defines a global gene class which is the logical union of those at the local sources;
similarly, most sources have a protein concept, which the mediator also unions.
By contrast, in XBrain the concepts at the sources are largely disjoint, and
the mediated schema would trivially consist of all local schemas taken together,
making the mediator almost superfluous.

The second reason is that mediator based systems require a unique data
model for all sources, in order to be able to perform fully automatic query
translation. They also hide the schema details at sources from the user, allowing
inexperienced users to access large numbers of data sources. None of these applies
to XBrain: some sources (like FMA) are best kept in their native datamodel,
which is not XML, and our sophisticated users are quite comfortable with the
details of the source schemas.

Finally, despite fifteen years of research, there are currently no widely avail-
able, robust tools for building mediator systems.

Our approach in XBrain is different, and is based on a distributed evaluation
of XQuery. All local sources are fully exposed to the users, who formulate XQuery
expressions over them.

XQueryD: A Distributed XQuery Language The goal is to allow users to
query multiple sources in one query. While this can already be done in XQuery,
it supports only the data shipping model (through the document() function):
it fetches all data sources to a single server, then runs the query there. This
is a major limitation for many applications, especially when some data sources
are very large, or when a data source is only a virtual XML view over some
other logical data model. For example, our CSM data source is not a real XML
document, but a virtual view over a relational database. If we materialized it,
the 8MB relational database becomes a 30MB XML document; clearly, it is
very inefficient to fetch the entire data with document(). We propose a simple
extension to XQuery that allows query shipping to be expressed in the language,
in addition to data shipping. The language consists of a single new construct
added to ExprSingle, and is shown in Fig. 5

Example 2. We illustrate XQueryD with one single example. The query in Fig. 6
integrates three sources: the Image database (XML), the CSM databases (rela-

for $image in document("image_db.xml")//image
let $region_name := execute at "http://csm.biostr.washington.edu/axis/csm.jws"

xquery { for $trial in PublicView("Scrubbed.pv")/patient/surgery/csmstudy/trial
where $trial/trialcode/term/abbrev/text()="2"
return $trial/stimsite/name()

},
$surrounding_regions :=

for $term in $region_name
return <term> {(execute at "http://csm.biostr.washington.edu/oqafma"

foreign {WHERE Y->":NAME"->"$term",
X->("part")*->Y,
X->":NAME"->Ancestor

CREATE Concept(Ancestor); }
)/results/Concept/text()

}
</term>

where $image/annotation_set/image_annotation/name/text() = $surrounding_regions/text()
return $image/oid/text()

Fig. 6. Example of a query in XQueryD

tional), and the OQAFMA database (ontology). The query starts at the image
database, and iterates over all images. The execute at command instructs the
query processor to send the subsequent query to a remote site for execution: there
are two remote queries in this example. The query returns all images are anno-
tated by an anatomical name that is part of the anatomical region surrounding
any language site with error type 2.

We initially implemented XQueryD by modifying Galax to accept the new
constructs, which was a significant development effort. Once new versions of
Galax were released, we found it difficult to keep up with Galax’ code evolu-
tion. We are currently considering implementing a translator from XQueryD to
XQuery with Webservice calls that implement the execute statements. For the
future, we argue for the need of a standard language extension of XQuery to
support distributed query processing in query shipping mode.

Discussion There is a tradeoff between the mediator-based approach and the
distributed query approach. In XQueryD users need to know the sources’ schemas,
but can formulate arbitrarily complex queries as long as these are supported by
the local source. Adding a new source has almost no cost. A mediator based
systems presents the user with a logically coherent mediated schema, sparing
him the specific details at each source; it can potentially scale to large number
of sources. On the other hand, users can only ask limited form of queries sup-
ported by the mediator, typically conjunctive queries (i.e. without aggregates or
subqueries), and the cost of adding a new source is high.

4.3 Graphical Query Interface

In order to allow easy access to the integrated sources and to all data processing
tools, XBrain needs to allow users to formulate complex queries over the data

without necessarily being competent in a query language. Our current approach
is to provide the user with (a) a free form for typing XQueryD expressions, (b) a
number of predefined XQueryD expressions, which can be modified by the users
in free form, and (c) a simple interface that allows users to save query expressions
and later retrieve and modify them. This part of the system will be extended in
the future with elements of graphical query languages; there is a rich literature
on graphical query interfaces, e.g. QBE [40] and XQBE [4].

4.4 Heterogeneous Output Formats

The output of XQueryD is a single XML document describing the results of
integrating data from the different data sources. While such a document may
be useful for analysis programs or XML-savvy users, it is not the most intu-
itive. Thus, we allow users to choose alternative output formats, including both
common formats such as HTML or CSV (comma separated values for input to
Excel), and formats that are specific for an application.

In our approach, the system generates automatically an XSLT program for
each XQueryD, and for each desired output format. The XSLT program is simply
run on the query’s answer and generates the desired output format. We currently
support CSV, HTML, and some proprietary formats for image generation tools.
To generate the XSLT program, the system needs to know the structure of
the XML output, i.e. the element hierarchy and the number of occurrences of
each child, which can be *, 1, or ? (0 or 1). In an early version we computed
this structure by static analysis on the query (type inference), but we found that
code brittle and hard to maintain and are currently extracting the structure from
the XML output: the tiny performance penalty is worth the added robustness.
Figure 7 (a) shows four possible output formats for the same output data: in
XML format, in CSV format, in HTML format, and as an image.

4.5 Integration of Heterogeneous Visualization Tools

Common output transformations, such as HTML or CSV as noted in the previ-
ous section, can be part of a generic integrated application that could be applied
to many different problems. However, each biomedical application will have its
own special output requirements that may best be addrsseed by independent
visualization tools. Our approach to this problem is to create independent tools
that can run as web services callable by the XBrain application. We have exper-
imented with such services for a 2-D image visualization tool that accepts XML
output from the CSM database and generates an image showing the locations
on a 2-D sketch of the brain where specific types of language processing occur.

Such an approach may also be useful for 3-D visualization of query results,
using a server-based version of our BrainJ3D visualization tool [26]. Interactive
visualization and analysis of the results, which might include new query forma-
tion, will require alternative approaches, such as a Web Start application that
can create an XQuery for the integrated query system.

(a)

<results>
{ for $trial in PublicView("Scrubbed.pv")

/patient/surgery/csmstudy/trial
where $trial/trialcode/term/abbrev/text()="2"
return

<answer>
<name>

{ $trial/stimsite/name() }
</name>
<image-anchor>

<uri>
http://csm.biostr.washington.edu/vbm

</uri>
<param>

{ $trial/stimsite/name() }
</param>
<param>

gray
</param>

</image-anchor>
</answer> }

</results>

(b)

Fig. 7. Different query output formats (XML, CSV, HTML, and Image) (a). Query
for embedding images in XML files (b).

Our approach is as follows (we refer to Fig. 1 below). Every visualization tool
must be a Webservice and offer a common interface that accepts some tool spe-
cific input parameters and generates an image (jpeg file). The XQueryD expres-
sion returns certain subelements in the answer that are anchors to visualization
Webservices. The user has to explicitly construct these anchors, like in Fig. 7
(b), which returns a set of stimulation sites, each with an image of the brain
with the corresponding stimulation site highlighted. The answer to the query
contain elements image-anchor. When the HTML generator (see Fig. 1) trans-
lates the XML document into HTML, it processes the image anchors by calling
the appropriate Webservice with the appropriate parameters, then embeds the
resulting images in the HTML table.

5 Related Work

Distributed Query Processing There is a rich literature on distributed
query processing and optimization; a survey is in [22]. Our syntactic approach
to distributed query is closest in spirit to the Kleisli system [39], and also re-

lated to process calculi and their application to database queries [31, 17]. Unlike
ubQL [31], we use only one communication primitive, namely the migration
operator execute, and omit channels and pipelining. A different approach to
distributed data is Active XML [3, 2, 1]. Here an XML tree may contain calls to
Webservices that return other XML fragments. Query evaluation on Active XML
naturally leads to distributed execution. XQueryD differs from Active XML in
several ways. In Active XML the data need to be modified by inserting Web-
service calls and users are unaware of the distributed nature of the data; by
contrast, in XQueryD the data do not need to be modified, while queries require
detailed knowledge of the sources and their capabilities.

Mapping Relational Data to XML Mapping relational data to XML has
been discussed extensively [14, 8, 34, 33, 37, 12]. In addition, most of the database
vendors today offer some support for XML publishing: Oracle [24, 10], SQL
Server [25], BEA’s Liquid Data [9]. Each mapping language is proprietary,
and can only be used in conjunction with that particular product (relational
database or query engine). In addition, none offers any shortcuts to defining the
mapping: users have to write each piece of the mapping. In contrast RXQuery
is more lightweight, and is translated into XQuery, and is specifically designed
to be very concise when defining complex mappings.

Other Related Work For XQuery processing we use the Galax, which is
described in [13]. For translating XQuery to SQL we use SilkRoute, whose ar-
chitecture is described in [11], and which we recently extended significantly to
generated optimized SQL code: the extensions and optimizations are described
in [29]. Other optimization techniques for the XQuery to SQL translation are
discussed in [23]. There is a rich literature on graphical query interfaces, start-
ing with Zloof’s QBE [40]. Recent work describes a graphical query interface to
XQuery, called XQBE, is in [4].

6 Conclusions

The high complexity in integrating today’s biomedical data has two root causes:
the fact that the data are increasingly distributed and generated by collaborative
environments, and the fact that they are processed, analyzed and visualized by
increasingly more complex tools. We have described a framework for integrating
data and tools for biomedical data, with a specific application to the University
of Washington’s Human Brain Project.

Acknowledgments: This work was funded in part by NIH Human Brain
Project grant DC02310 and Suciu was partially supported by the NSF CAREER
Grant IIS-0092955, NSF Grants IIS-0140493, IIS-0205635, and IIS-0428168, and
a gift from Microsoft.

References

1. S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and N. Preda. Lazy
query evaluation for active XML. In SIGMOD, 2004.

2. S. Abiteboul, O. Benjelloun, and T. Milo. Positive active xml. In PODS, 2004.

3. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic xml
documents with distribution and replication. In SIGMOD, pages 527–538, 2003.

4. E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design of a graphical interface
to XQuery. In Proceedings of the ACM Symposium on Applied Computing (SAC),
pages 226–231, 2003.

5. J. Brinkley, R. Jakobovits, and C. Rosse. An online image management system for
anatomy teaching. In Proc. AMIA Fall Symposium, page 983, 2002.

6. J. Brinkley, B. Wong, K. Hinshaw, and C. Rosse. Design of an anatomy information
system. Computer Graphics and Applications, 19(3):38–48, 1999. Invited paper.

7. J. F. Brinkley, L. M. Myers, J. S. Prothero, G. H. Heil, J. S. Tsuruda, K. R.
Maravilla, G. A. Ojemann, and C. Rosse. A structural information framework
for brain mapping. In Neuroinformatics: An Overview of the Human Brain
Project, pages 309–334. Mahwah, New Jersey: Lawrence Erlbaum, 1997. See also
http://sig.biostr.washington.edu/projects/brain/.

8. M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram, E. Shekita, and
S. subramanian. XPERANTO: publishing object-relational data as XML. In
Proceedings of WebDB, Dallas, TX, May 2000.

9. M. J. Carey. BEA liquid data for WebLogic: XML-based enterprise information
integration. In ICDE, pages 800–803, 2004.

10. A. Eisenberg and J. Melton. SQL/XML is making good progress. SIGMOD Record,
31(2):101–108, 2002.

11. M. Fernandez, Y. Kadiyska, A. Morishima, D. Suciu, and W. Tan. SilkRoute : a
framework for publishing relational data in XML. ACM Transactions on Database
Technology, 27(4), December 2002.

12. M. Fernandez, A. Morishima, and D. Suciu. Efficient evaluation of XML middle-
ware queries. In Proceedings of ACM SIGMOD Conference on Management of
Data, Santa Barbara, 2001.

13. M. Fernandez and J. Simeon. Galax: the XQuery implementation for discriminating
hackers, 2002. available from http://db.bell-labs.com/galax/.

14. M. Fernandez, D. Suciu, and W. Tan. SilkRoute: trading between relations and
XML. In Proceedings of the WWW9, pages 723–746, Amsterdam, 2000.

15. M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. Declarative specification
of web sites with strudel. VLDB Journal, 9(1):38–55, 2000.

16. J. Funderburk, G. Kiernan, J. Shanmugasundaram, E. Shekita, and C. Wei. Tech-
nical note - XTABLES: Bridging relational technology and XML. IBM Systems
Journal, 42(3):538–, 2003.

17. P. Gardner and S. Maffeis. Modelling dynamic Web data. In Proceedings of DBPL,
pages 75–84, Potsdam, Germany, 2003.

18. X. Hertzenberg, A. Poliakov, D. Corina, G. Ojemann, and J. Brinkley. X-batch:
Embedded data management for fmri analysis. In Society for Neuroscience Annual
Meeting, page 694.21, San Diego, 2004.

19. K. Hinshaw, A. Poliakov, R. Martin, E. Moore, L. Shapiro, and J. Brinkley. Shape-
based cortical surface segmentation for visualization brain mapping. Neuroimage,
16(2):295–316, 2002.

20. R. Jakobovits, C. Rosse, and J. Brinkley. An open source toolkit for building
biomedical web applications. J Am Med Ass., 9(6):557–590, 2002.

21. S. Koslow and S. Hyman. Human brain project: A program for the new millenium.
Einstein Quarterly J. Biol. Med., 17:7–15, 2000.

22. D. Kossmann. The state of the art in distributed query processing. ACM Comput.
Surv., 32(4):422–469, 2000.

23. R. Krishnamurthy, R. Kaushik, and J. Naughton. Efficient XML-to-SQL query
translation: Where to add the intelligence? In VLDB, pages 144–155, 2004.

24. M. Krishnaprasad, Z. Liu, A. Manikutty, J. Warner, V. Arora, and S. Kotsovolos.
Query rewrite for XML in oracle XML DB. In VLDB, pages 1122–1133, 2004.

25. M. Library. Creating xml views by using annotated xsd schemas, 2005.
26. E. Moore, A. Poliakov, and J. Brinkley. Brain visualization in java3d. In Proceed-

ings, MEDINFO, page 1761, San Francisco, CA, 2004.
27. P. Mork, J. F. Brinkley, and C. Rosse. OQAFMA querying agent for the founda-

tional model of anatomy: a prototype for providing flexible and efficient access to
large semantic networks. J. Biomedical Informatics, 36(6):501–517, 2003.

28. C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In Workshop
on Information Integration on the Web (IIWeb), pages 116–121, September 2004.

29. C. Re, J. Brinkley, and D. Suciu. Efficient publishing of relational data to XML.
submitted.

30. C. Rosse and J. L. V. Mejino. A reference ontology for bioinformatics: the foun-
dational model of anatomy. Journal of Bioinformatics, 36(6):478–500, 2003.

31. A. Sahuguet and V. Tannen. ubQL, a language for programming distributed query
systems. In WebDB, pages 37–42, 2001.

32. R. Shaker, P. Mork, J. Brockenbrough, L. Donelson, and P. Tarczy-Hornoch. The
biomediator system as a tool for integrating biologic databases on the web. In
Proc. Workshop on Information Integration on the Web, held in conjunction with
VLDB, 2004.

33. J. Shanmugasundaram, , J. Kiernana, E. Shekita, C. Fan, and J. Funderburk.
Querying XML views of relational data. In Proceedings of VLDB, pages 261–270,
Rome, Italy, September 2001.

34. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh,
and B. Reinwald. Efficiently publishing relational data as XML documents. In
Proceedings of VLDB, pages 65–76, Cairo, Egypt, September 2000.

35. Z. Tang, Y. Kadiyska, H. Li, D. Suciu, and J. F. Brinkley. Dy-
namic XML-based exchange of relational data: application to the Human
Brain Project. In Proceedings, Annual Fall Symposium of the Ameri-
can Medical Informatics Association, pages 649–653, Washington, D.C., 2003.
http://quad.biostr.washington.edu:8080/xbrain/index.jsp.

36. Z. Tang, Y. Kadiyska, D. Suciu, and J. Brinkley. Results visualization in the xbrain
xml interface to a relational database. In Proceedings, MEDINFO, page 1878, San
Francisco, CA, 2004.

37. I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered XML using a relational database system. In SIG-
MOD, May 2002.

38. G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, pages 38–49, March 1992.

39. L. Wong. The functional guts of the Kleisli query system. In Proceedings of ICFP,
pages 1–10, 2000.

40. M. M. Zloof. Query-by-example: A data base language. IBM Systems Journal,
16(4):324–343, 1977.

