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Abstract

We describe a largely complete and efficient XQuery to SQL trans-
lation for XML publishing. Our translation supports the entire XQuery
language, except for functions, if statements and upwards navigation axes.
The system has three important properties. First, it preserves the cor-
rect XQuery semantics. This is accomplished by first translating XQuery
into core-XQuery, using a complete XQuery implementation, Galax. Sec-
ond, we optimize the resulting SQL queries. We develop a comprehensive
framework for optimizing the XQuery to SQL translation, which is ef-
fective for a wide range of XQuery workloads. Third, our translation is
platform independent. Our system achieves high degree of efficiency on
a wide range of relational systems. This paper reports an extensive ex-
perimental validation on several XQuery workloads, using MySQL, Post-
greSQL, and SQL Server, and compares this approach with five native
XQuery engines: Galax (the newer, optimized version), Saxon, QizOpen,
IMDB and Quexo.

1 Introduction

XQuery can be implemented in at least three ways: as a native XML engine;
on top of an existing relational engine’s infrastructure; or by translating it into
general SQL.

Galax [7], Natix [9], and Timber [16] are examples of native XML engines.
Such engines need to reimplement most of the functionality of a relational
database system, e.g. the storage manager, the query processor, and the opti-
mizer. This engines have more flexibility to support all features of XQuery and
can be optimized specifically for XQuery. It is a matter of debate, however, how
long this approach will take to catch up with relational technology.

Xperanto [3, 19, 18, 20], and the XQuery implementation in Yukon [14, 15]
are examples of the second approach. These systems evaluate an XQuery expres-
sion by using their existing relational operators (joins, index lookups, group-by’s
etc), and optimize the operator expression using their existing optimizers. Ma-
jor database vendors favor this approach because it allows them to leverage
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the huge infrastructure that they already have for processing relational data.
Vendors support only a fragment of XQuery, namely the fragment that maps
naturally to their engine’s relational operators. As a result, different vendors
support different fragments. Moreover, not all relational engines have XQuery
extensions: most notably the popular open source systems MySQL and Post-
greSQL do not support XQuery.

This paper is about the third approach: translate XQuery expressions into
SQL statements in order to execute them on any relational database system.
This middleware approach is useful in applications that already use a relational
database and would like to offer an XML/XQuery interface, without having to
migrate to a new database server that supports XQuery. This task is known
as XML publishing. The middleware approach is attractive because it does not
depend on a specific database platform. However, this approach is technically
quite difficult, because of the huge mismatch between XQuery and SQL. In
addition, the translation often results in very complex SQL expressions, which
need to be optimized by the middleware before being sent to the relational en-
gine. A translation algorithm was described in SilkRoute [5], but it assumed an
unordered data model for XQuery. Some specific optimization techniques have
been described in [19, 6] (optimizing the XML construction), and [13] (elimi-
nating foreign key joins and unions), but no complete framework for optimizing
the translated queries exists.

We describe in this paper a complete, and efficient XQuery to SQL transla-
tion. Our system, called SilkRoute II, translates arbitrary XQuery expressions
to SQL, and faithfully preserves the XQuery semantics. The system supports
the XQuery language, except for functions, if statements 1 and upwards navi-
gation axes. SilkRoute II has three important properties.

The first property is that it preserves the correct semantics, while capturing
the entire language. For that, we use a reference XQuery implementation, Galax,
to first translate an XQuery expression into core-XQuery. Our translation al-
gorithm applies to core-XQuery expressions that are automatically generated
by Galax. This ensures that we capture the right semantics during translation.
The downside is that the translation becomes difficult, since it is no longer
restricted to some toy XQuery fragment. One contribution of this paper is
to develop an intermediate representation (IR) for mappings from relational
databases to XML, which enables the translation of the entire language.

The second property is that it generates highly efficient SQL queries, for a
wide range of XQuery workloads. We describe here a wide range of optimiza-
tion techniques, in addition to those previously mentioned in the literature,
which improve the performance of the resulting SQL queries. While some of
the optimization on this list have been discussed before in various settings, to
the best of our knowledge this paper is the first to present a comprehensive list
of optimization techniques that apply to a variety of XQuery workloads. One
contribution of this paper is the optimization framework for the XQuery to SQL

1If statements can be compiled as the union of the true and false portions of the branch
combined with the condition and negation, respectively.
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translation.
The third property is that our system is platform independent. Moreover,

it achieves high efficiency on a wide range of relational systems. We do this by
experimenting with several platforms and making choices in our optimization
techniques that apply across multiple platforms. We do allow some minimal
platform specific hooks, for example to estimate cost over a particular engine.

We validate our system on several workloads, and over several relational
engines (MySQL, PostgreSQL, and SQL Server). We also compare this with
several existing native XQuery engines: Galax, Saxon, QizOpen, IMDB and
Quexo. The extensive experimental results, including the comparison of two
different approaches to XQuery evaluation, are one contribution of this paper.

Our framework is that of the XML publishing problem, when a relational
database is given and the XQueries are over an XML view over the database.
The view may be hierarchical, arbitrarily deep, but not recursive. We do not
address the XML storage problem, where the relational schema is designed
specifically for XML storage and processing: see [12] for a detailed explanation
of the differences between the two.

While our results are of direct interest for XML publishing, they also shed
light on trade-offs of relational and XML engines. We found that SilkRoute II
in conjunction with a high performance database system (SQL Server) outper-
formed all five native XQuery engines that we tried, on all query workloads, and
on all data sizes (both small and large). Even with the least efficient relational
database system of the three we tried (MySQL), SilkRoute II still outperformed
the native XQuery engines on most (but not all) queries. Moreover, none of the
native XQuery engines scaled to large data sets, while SilkRoute II did over all
three relational engines. These findings point both to the maturity of relational
technology and to the high quality of the SQL queries generated by SilkRoute II.
We found that naively generated SQL queries run much slower on the relational
engines, and are easily outperformed by the native XQuery engines on small
datasets. Naive SQL queries sometimes did not terminate or could not run at
all. Thus, the optimizations performed by SilkRoute II had a dramatic impact,
on many queries in the workloads we tried. But perhaps the most surprising
finding was that most of the XQuery native engines supported a fragment of
XQuery that is less complete than that supported by SilkRoute II. This was
unexpected. Given the difficulties in translating XQuery to SQL, we expected
native XQuery engines to support a larger fragment than SilkRoute II.

The paper is organized as follows. Section 2 shows some of the challenges
encountered by a complete and performant XQuery to SQL translation. Sec. 3
describes the system’s architecture. Sec 4 describes our new intermediate rep-
resentation. Sec. 5 describes the optimization framework. Sec. 6 contains the
experimental validation. Related work is in Sec. 7. We conclude in Sec. 8.
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2 Challenges

XQuery and SQL are based on different paradigms (imperative v.s. declarative)
and manipulate different data types (ordered sequences v.s. sets of tuples). We
illustrate here concretely some of the challenges faced by a general XQuery to
SQL translator. Our examples are drawn from the XBrain project [2]. SilkRoute
II is an XML publishing system, not an XML storage system (see the taxonomy
in [12]), hence it assumes a given relational database and does not design one
from scratch in order to execute XQueries. It is based on the GAV publishing
approach. In the following examples we omit describing the relational schema,
but mention that most parent/child relationships in the XML view correspond
to key/foreign key relationships in the relational data. In each example the
relevant parts of the relational schema will be obvious.

Verbose Formal Semantics XQuery has both a formal and informal se-
mantic. SilkRoute II internally deals with the formal semantic representation
of XQuery. For example, consider the following XQuery:
for $c in /patient/surgery/csmstudy,
$e in /patient/surgery/anatomymap/anatomymapelement

where $c/trial/stimsite/text() = $e/stimsite/text()
return <result> { $c/oid/text(), $e/site_label }

</result>

This seems like a simple join, however each of the two join expressions can
potentially be a sequence. As a result the normalized core expression looks
something like:
for $c in /patient/surgery/csmstudy,
$e in /patient/surgery/anatomymap/anatomymapelement

where (Some $s1 in $c/trial/stimsite/text()
(Some $s2 in $e/stimsite/text()

return op:equal($s1,$s2)))
return <result> { $c/oid/text(), $e/site_label }

</result>

In order to faithfully implement the semantics of XQuery, SilkRoute II
relies on the normal query form generated by a reference implementation of
XQuery [7]. This normal form is incredibly complex, even for simple queries,
which makes the translation task much harder. However, we argue that any
complete XQuery to SQL translator should use this normal form as a starting
point, in order to correctly adhere to the semantics.

Query Flattening Continuing the previous example, a naive translation
into SQL could look like the following.
SELECT C.oid, E.site_label
FROM Anatomymapelement E, Csmstudy C
WHERE EXISTS

(SELECT * FROM Trial T
WHERE T.cid = C.cid and E.stimsite = T.stimsite)

In general two EXISTS quantifiers should be generated, but we used here the
fact that each anatomymapelement has a unique stimsite subelement.

Such nested SQL queries frequently arise when translating from XQuery.
There is a wide range of behaviors in the way relational engines handle nested
subqueries. Most commercial systems optimize them seamlessly. However, ear-
lier versions of MySQL do not even support nested queries. The latest version
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allows them but with with very poor performance. Query flattening will allow
us to rewrite the following equivalent query:

SELECT DISTINCT C.oid, E.eid, E.site_label
FROM Anatomymapelement E, Csmstudy C, Trial T
WHERE T.cid = C.cid and E.stimsite = T.stimsite

The DISTINCT keyword eliminates duplicates corresponding to multiple Trials.
Notice that we had to add the key attribute E.eid to preserve the same seman-
tics. The middleware will receive a tuple stream that includes this attribute,
but will simply ignore it, and construct the XML answer using the other two
attributes. All relational engines, even the non-commercial engines, we tried
handle such SQL queries seamlessly.

Trimming Queries and Minimization Consider the following query:

for $p in /patient[surgery/trial/trialcode/text()=2]
return

<patient>
{ $p/name,

for $s in $p/surgery[trial/trialcode/text()=2]
return <surgery>

{ $s/date,
$s/trial[trialcode/text()=2]

}
</surgery>

}
</patient>

This is a typical trimming query, adapted from a real (and more complex2)
query on the Website [2]: find all patients who had a surgery with a trial with
a trial code 2; for these patients list only their surgeries that had a trial code
2; etc. There is some redundancy present in this XQuery: if a trial element
satisfies the condition:

trial[trialcode/text()=2]
then its parent surgery element satisfies the condition

surgery[trial/trialcode/text()=2] ;
similarly the grand-parent patient satisfies

patient[surgery/trial/trialcode/text()=2]
This redundant form is, nevertheless, the only way to express such trimming
queries in XQuery. The problem is that this redundancy propagates into the
resulting SQL. For example, the SQL query corresponding to the innermost
trial element is the following horrendous expression:

SELECT t.trial_number, t.slide
FROM trial AS t
WHERE EXISTS(SELECT * FROM trialcode e

WHERE e.tid = t.tid and e.code=2)
and EXISTS(

SELECT * FROM surgery AS s
WHERE EXISTS(

SELECT * FROM trial AS t2, trialcode AS e2
WHERE t.sid = s.sid and s.sid=t2.sid

and t2.tid = e2.tid and e2.code=2)
and EXISTS(

SELECT * FROM patient AS p

2We dropped the csmstudy element between surgery and trial.
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WHERE s.pid = p.pid and EXISTS(
SELECT *
FROM surgery AS s3 trial AS t3, trialcode AS e3
WHERE p.pid = s3.pid and s3.sid = t3.sid

and t3.tid = e3.tid and e3.code=2)))

After eliminating the redundancies, however, the query becomes equivalent
to:

SELECT t.trial_number, t.slide
FROM trial AS t
WHERE EXISTS(SELECT * FROM trialcode e

WHERE e.tid = t.tid and e.code=2)

The process that simplifies the first query into the second one is called query
minimization and has been intensively studied in the theoretical database com-
munity [1]. However, to the best of our knowledge no database systems today
implements query minimization. We found that by implementing minimization
in the middleware one can considerably increase the performance of trimming
XQuery expressions, which are quite common in some real life workloads.

Order XQuery manipulates ordered sequences, while SQL manipulates sets
of tuples. Order is strictly controlled in XQuery, in two ways: by the document
order (the default), and through the order by clause. Consider:

for $p in /patient
order by $p/dateOfBirth/data()
return <patient>

{ $p/name,
for $s in $p/surgery
order by $s/physician/name/text()
return <surgery>

...
$s/trial[trialcode > 2]

</surgery>
}

</patient>

There are three orders here: the patient elements are ordered by their
date of birth; the surgery elements are ordered by the physician’s name, and
the trial elements are in document order. Each of the corresponding SQL
statements must be carefully constructed in order to preserve the intended order,
while allowing the middleware to merge-join the tuples corresponding to the
three nested elements. The challenge here is for the middleware system to have
a good representation of the intermediate order of each subcollection, to be able
to trace the intended order through various constructs, including intermediate
expressions introduced by let bindings.

Position predicates Consider the following simple XPath expression:

patient[3]/surgery[trial[1]/trialcode/text()=’2’]

This returns all surgeries of the third patient, where the first trial had
some trial code 2. Using bare-bones SQL, the following query corresponds to
patient[3]:
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SELECT X.*
FROM Patient X, Patient Y
WHERE X.pid >= Y.pid
GROUP BY X.pid
HAVING count(Y.pid) = 3

The SQL query returning patient[3]/surgery/trial[1] is horrendous.
Some database systems support the SELECT TOP 3 ... construct, which can
be used to implement position predicates and results in somewhat more efficient
queries. By contrast, position predicates are supported very efficiently by native
XML engines, since they just have to lookup the third, or the first element
in an ordered list. We show here, however, that by adding simple position
information to the relational database it is possible to optimize most position
queries significantly.

Loop Invariants XQuery can be used for document transformation. As a
result we have encountered queries like the following:

for $p in /patient,
$s in $p/surgery[.//trialcode=2]

return <surgery>
{ $s/photo,

$p/imagingstudy/mrseries[mrslice/text()>5]
}

</surgery>

The problem here is that the same collection of mrseries is copied in all
surgeries of the same patient. A naive execution of this query will compute the
expressions
$p/imagingstudy/mrseries[mrslice/text()>5] redundantly, once for each
surgery of the patient $p. Of course, this is a loop invariant, and can be fac-
tored out in a let statement. Standard compiler technology can detect loop
invariants automatically and move them outside the loop. Some modern XQuery
processors already implement this. However, this is much harder to implement
in an XQuery to SQL translator, since its actions are limited to submitting
SQL queries and merging their resulting tuple streams. The issue is that the
middleware needs now to store the XML fragment that is loop invariant. This
is simple for the query above, since only one value of the loop invariant needs
to be stored by the middleware. It can be much more difficult in general, as
illustrated by the following:

for $p in /patient,
$s in $p/surgery[.//trialcode=2]

order by $s/date/text()
return <surgery>

{ $s/photo/text(),
$p/imagingstudy/mrseries[mrslice/text()>5]

}
</surgery>

Now surgeries from different patients are interleaved, and the middleware
needs to store the value of the loop invariant for each patient separately.

Heterogeneous Sequences In XQuery it is possible to iterate over se-
quences of different types. For example it is easy to construct, in XQuery,
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an heterogeneous collection of patients and physicians. The structure of a
patient element is different from that of a physician element, and hence differ-
ent SQL queries are needed to construct them. If all patient elements precede
the physician elements, then the middleware could use UNION ALL. But if the
elements are shuffled, e.g. if the XQuery expression sorts them by their name,
then an alternative is to return the two tuples streams separately, and let the
middleware merge them.

Varying Capabilities of SQL Engines Efficient translation from XQuery
to SQL relies on different and sometimes ill-supported features. For example,
our queries are highly nested. Such highly nested queries pose problems for
optimizers and even for execution against some older engines.

3 Architecture

SilkRoute II is a middleware system for exporting an existing relational database
to XML. We describe here its architecture.

Canonical XML View Initially, the data owner sees a canonical view of
the underlying relational database: each table is an element, having multiple
row subelements, with one subelement for each attribute of that table. This is a
standard conceptual XML view of a relational database, roughly corresponding
to the XML RAW mode in SQL Server.

Public XML View The data owner starts by defining a Public XML View
over the relational data. This is expressed as a large XQuery program over the
canonical view. This program can have, say, 1000-2000 lines, or can be even
larger, in order to construct a complex, hierarchical XML view of the entire
relational database. New XML views can be easily defined in terms of existing
once, since XQuery is fully compositional, and SilkRoute II fully supports the
compositionality. The public view (or views) is kept virtual.

User XQueries End users see only the public XML view of the relational
database, not the actual relational database. They submit XQuery expressions
over that view, as if it were a materialized XML document. They can also
refer to multiple XML views of the same relational database, but to keep our
discussion simple we will assume throughout the paper that they refer to a single
view, called the public XML view. SilkRoute II composes the user’s query with
the public view definition, which results in an XQuery expressed directly over
the canonical view. This is the query that is translated into one or several SQL
queries and executed on the relational engine. Notice that it is easy for users to
materialize the entire public view if the want that: they just write an XQuery
that returns the root of the public view.

Intermediate Representation Internally, SilkRoute II uses an interme-
diate representation, IR, to represent XQueries over the canonical view. We
have designed the IR specifically to enable the large variety of the optimizations
needed in the XQuery to SQL translation: the IR is described in some detail in
Section 4. The IR is compositional in the following sense: given an intermediate
representation I that maps the relational database to some XML view, and an
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XQuery expression Q over that XML view, then it is possible to construct a
new intermediate representation J that is equivalent to Q ◦ I: the meaning of
J is that it maps the relational database directly to the result of Q. In the first
application of compositionality, I is the canonical view and Q is the public view
definition: then Q◦ I results in an internal representation of the public view. In
the second application, I is the internal representation of the public view, and
Q is the user’s XQuery: then Q ◦ I results in an internal representation that
needs to be translated to XQuery, then optimized and executed.

Formal Semantics Each XQuery is first translated into the the XQuery
Core language, which is the standard XQuery semantics. We used the trans-
lation module in the reference XQuery implementation Galax [7] for this task.
This enables SilkRoute II to faithfully implement the standard XQuery seman-
tics. This point should not be underestimated: previous XQuery to SQL trans-
lations use a direct approach, thus feeling free to twist the XQuery semantics,
or to restrict the language, whenever a translation to SQL is too difficult. We
feel that, for a middleware approach to XQuery to be credible, one needs to
support the full language.

SQL Queries and Tagger When an IR needs to be executed, SilkRoute II
generates one or more SQL queries. The number of SQL queries depends only
on the IR expression, and not on the data, and is typically small (1 or 2 for all
XMark queries, between 1 and 6 for the more complex HBP queries; see Sec.6).
These SQL queries are then rewritten and optimized: this phase is described in
Section 5.

Finally, SilkRoute II issues all queries against the relational engine, using
an ODBC connection. Then, it reads the resulting tuple streams, merges them,
and adds the XML tags. Each SQL query has an ORDER BY clause, ensuring
that the tuples return in the right order, hence SilkRoute II needs to hold in
main memory only one tuple from each tuple stream. This is called a constant
space XML tagger in [19].

4 Intermediate Representation

Designing a good intermediate representation, IR, for representing mappings
from relational data to XML is crucial for a complete and efficient SQL to
XQuery translation. Such a representation needs to meet three conflicting goals

• It must be complete, i.e. capable for representing any mapping that can
be expressed in XQuery, while faithfully preserving its semantics.

• It must SQL-like: in other words, it should be easy to read from it the
SQL queries that would implement that mapping.

• It must be compositional, i.e. it must be easy to apply an XQuery to a
given IR and obtain a new IR.

• It must be simple, to allow optimizations.
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[IR] ::= [IRS]*
[IRS] ::= FROM [SQL-from-tables] [IR]

| WHERE [SQL-where-condition] [IR]
| ORDER BY [SQL-order-by-attributes] [IR]
| <xmltag > [IR] . . . [IR] </xmltag>
| LEAF [SQL-select-expression]
| LEAF [XQuery-function](IR)

Figure 1: Definition of the IR Language. Attributes are omitted to avoid clutter.

We define our IR in Fig. 1. An IR expression is best visualized as a tree
(more accurately: a forest), where each node is labeled by one of the following:
FROM, WHERE, ORDER BY, an XML tag, or LEAF. The figure omits attributes to
reduce clutter, but they are easy to add. We will illustrate next the IR language
through several examples, explaining how it addresses the three conflicting goals.

Consider the following XQuery expression:

XQ1:
for $x in /patient
return

<patient> <name>{ $x/name }</name>
<surgeries> {

for $y in $x/surgery
return <id> { $y/sid } </id>

</surgeries>
</patient>

This is translated to the following in the intermediate representation.

IR1:
ORDER BY p.pid
FROM Patient p
<patient> <name> LEAF( p.Name ) </name>

<surgeries>
ORDER BY s.sid
FROM Surgery s
WHERE s.patient_id = p.pid
<id> LEAF( s.sid ) </id>

</surgeries>
<patient>

The meaning of the FROM clause is that it generates a set of patient tuples
p, and for each constructs a <patient> element. The ORDER BY clause spec-
ifies that this set has to be ordered by p.pid (assumed to be the document
order in our simple example). Underneath a <patient> we construct a name
and surgeries element. The latter contains an ordered list of <id> elements,
obtained by executing the inner FROM statement. Notice that in an IR tree an
ORDER BY clause appears right above the FROM statement to which it applies.

Now we must turn this representation into a sequence of SQL queries, to
issue the engine. In this case, we notice that there is an element constructor
<surgeries> between the two FROM nodes. This means that we need to issue a
separate SQL query corresponding to each FROM node:

Q1: SELECT p.pid, p.Name
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FROM Patient p
ORDER BY p.pid

Q2: SELECT p.pid, s.sid
FROM Patient p, Surgery s
WHERE s.patient_id = p.pid
ORDER BY p.pid, s.sid

Notice that in the second query we order by p.pid first, in order to allow
the tagger to sort-merge the two tuple streams, and second by s.sid, to keep
the surgeries in document order (which we assume here is given by s.sid).

Alternatively, the two queries can be combined into one left outer join:

SELECT DISTINCT p.pid, p.Name, s.sid
FROM Person p LEFT OUTER JOIN Surgery s
ON p.pid = surgery.patient_id

ORDER BY p.pid, s.sid

Compositionality Consider now what happens if we apply another XQuery
to IR1, the intermediate representation of the previous query. This corresponds
to the XQuery expression below:

XQ2:
let $z := (for $x in /patient

return
<patient> <name>{ $x/name }</name>

<surgeries> {
for $y in $x/surgery
return <id> { $y/sid } </id>}

</surgeries>
</patient>

return $z/patient/surgeries/sid

The inner query is computed first, then the XPath expression surgeries/sid
is applied to the result. Applying the outer query is simulated by SilkRoute II
on the IR of the inner query, which is IR1 above. In this simple example we just
need to evaluate the Axis expression directly on the intermediate representation.
This “erases” the extra tags from IR1, resulting in:

IR2:
ORDER BY p.pid
FROM Patient p

ORDER BY s.sid
FROM Surgery s
WHERE s.patient_id = p.pid
<id> LEAF( s.sid ) </id>

Clearly a single SQL query can be issued here, by combining the two FROM
nodes and the two ORDER BY nodes.

Order The IR allows fine-grained control of the output order through the
ORDER BY nodes. These nodes should occur explicitly in the IR, in order to
define both the document order and the to implement the order by clause in
XQuery. For the document order we make the convention in SilkRoute II that
the primary key of each table defines the document order for the canonical
representation of that table. The order by clause in an XQuery expression
overrides this, which translates into a new ORDER BY node in IR, above that
corresponding to the document order.
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An important point is that the ORDER BY clauses allow us to reason about the
order, and use this during query composition. To illustrate this point consider
the following modification to XQ2:

XQ3:
let $z := (for $x in /patient

order by $x/age
return

<sugeries> {
for $y in $x/surgery
order by $y/date/text()
return $y

</surgeries>}
for $u in $z/surgery
order by $u/room/text()
return $u/sid

The inner query results in the following IR:

IR3’:
ORDER BY p.age, p.pid
FROM Patient p

<surgeries>
ORDER BY s.date, s.sid
FROM Surgery s
WHERE s.patient_id = p.pid
<surgery> ...complex IR... </surgery>

</surgeries>

Next, when the outer query is applied, SilkRoute II will remove the extra
tags, resulting in a query similar to IR2 and first consolidate the two FROM and
ORDER BY clauses. This results in the following IR, equivalent to IR2:

ORDER BY p.age, p.pid, s.date, s.sid
FROM Surgery s, Patient p
WHERE s.patient_id = p.pid
LEAF s.sid

Now it can apply the order by $u/room/text() clause, which results in
the final intermediate representation:

IR3:
ORDER BY s.room
ORDER BY p.age, p.pid, s.date, s.sid
FROM Surgery s, Patient p
WHERE s.patient_id = p.pid
LEAF s.sid

This is immediately translated to SQL:

SELECT s.sid
FROM Surgery s, Patient p
WHERE s.patient_id = p.pid
ORDER BY s.room, p.age, p.pid, s.date, s.sid

Heterogeneous Sequences A very simple illustration of a heterogeneous
sequence is:

XQ4:
let $z := (for $x in //physician, //nurse)
for $x in $z
order by $x/name/text()
return $x

12



This returns a heterogeneous sequence of physician and nurse elements.
The elements are interleaved, since the resulting sequence is sorted by name.
This can be easily expressed in IR (to reduce clutter we assume redundant
foreign key joins have been eliminated; see Sec. 5)

IR4:
ORDER BY x.name

FROM physician
....IR for a physician...

FROM nurse
....IR for a nurse...

5 Middleware Optimizations

5.1 Overview

Our middle-ware optimizer consists of three phases: IR rewriting, SQL gen-
eration, and SQL optimization. We describe each phase next. The optimizer
uses a configuration file specifying some characteristics of the SQL engine, e.g.
whether it supports nested queries, outer joins, etc, and uses these characteris-
tics to guide in some of the optimization choices. If no information is available
in the configuration file, then the optimizer assumes the worst (e.g. that the
engine does not support nested queries).

5.2 Phase 1: IR Rewriting

In the first phase the optimizer does some simple rewritings on the IR: it con-
solidates FROM and ORDER BY clauses and pushes aggregates down whenever
possible. The purpose is mostly to clean up the IR generated by the translator.
Adjacent FROM, WHERE, and ORDER BY clauses are consolidated, making it easier
for the SQL generator to navigate the IR tree.

5.3 Phase 2: SQL Generation

Here the optimizer chooses how to partition the IR tree in order to generate SQL
queries, decides what computations to do in the middleware, and optimizes loop
invariants. We illustrate the details next.

Partitioning The purpose of this step is to partition the IR tree into con-
nected components, by removing some of the xmltag nodes (see Fig. 1). We
illustrate this on the following query:

for $x in X
return

<r> <aa> { for $y in Y
where $y/@id = $x@id
return $y/a } </aa>

<bb> { for $z in z
where $z/@id = $x/@id
return $z/b } </bb>

</r>

which results in the following IR:
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ORDER BY x.xid
FROM X x
<r> <aa> ORDER BY y.yid

FROM Y y
WHERE y.xid = x.xid
<a> LEAF y.a </a> </aa>

<bb> ORDER BY Z.zid
FROM Z
WHERE z.xid = x.xid
<b> LEAF z.b </b> </bb>

</r>

The intermediate representation can be partitioned in several ways. One is
into three connected components, corresponding to the three FROM clauses. This
results in three separate SQL queries:
Q1: SELECT x.xid

FROM X x
ORDER BY x.xid

Q2: SELECT x.xid, y.a
FROM X x, Y y
WHERE x.xid = y.xid
ORDER BY x.xid, y.yid

Q3: SELECT x.xid, z.b
FROM X x, Z z
WHERE x.xid = z.xid
ORDER BY x.xid, z.yid

A second is to partition it into two connected components: one with the
first two FROM clauses, the other with the third FROM clause. This results in the
following two SQL queries:
Q1’: SELECT X.xid, Y.a

FROM X LEFT OUTER JOIN Y ON Y.xid = X.xid
ORDER BY X.xid, Y.yid

Q2’: SELECT x.xid, z.b
FROM X x, Z z
WHERE x.xid = z.xid
ORDER BY x.xid, z.yid

Another choice is to have a single partition, hence combine all three queries
into one single outer join. This, however, generates a costly cross product
between Y and Z.

If the SQL engine supports outer joins, then SilkRoute II greedily generates
a partitioning that includes outer joins but avoids Cartesian products; if the
SQL engine does not support outer joins then SilkRoute II generates the finest
partition, with one SQL query for every possible connected component. The
general partitioning problem has been studied in [6] and specific choices for
outer-join and outer-union queries have been discussed in [19].

Computations in the middleware Consider the IR query IR4, from
Sec. 4:
IR4:
ORDER BY x.name

FROM physician
....IR for a physician...

FROM nurse
....IR for a nurse...

This results in the following SQL query:
SELECT x.name
FROM (...SQL query for physician... UNION ALL

...SQL query for nurse...) as x
ORDER BY x.name
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Here the SQL queries for physicians and nurses need to be padded with
enough attributes (set to NULL) to make them union compatible. However,
some SQL engines do not support nested subqueries in the FROM clause. An
alternative is to issue the two SQL queries separately, each with an ORDER BY
name clause; then merge the two tuple streams by name in the middleware.
There are no more nested subqueries, and there is no need to make them union
compatible, hence the two SQL queries are slightly simpler. Our heuristics for
this rule is to apply it only when the underlying SQL engine does not support
nested queries in the FROM statement (which, in our experiments, applied only
to MySQL). In all other cases we generated the nested SQL query.

Loop Invariants Consider the following query, slightly modified from Sec. 2:
for $p in /patient,

$s in $p/surgery[room=’’ER45’’]
return <surgery>

{ $s/photo,
$p/imagingstudy[type=’’MRI’’]/name

}
</surgery>

The expression $p/imagingstudy[type=’’MRI’’]/name is independent of
the surgery $s and will be executed unnecessarily once for every surgery of a
given patient. If translated directly into SQL, the query generating the name
subelements (which is one of the three SQL queries issued by the system, as-
suming no outer joins) would contain a cartesian product between the surgeries
and the imagingstudies of the same patient.

The problem is that SQL does not have a let binding. Our solution is to
add a LET clause to the IR, with the following syntax:

IR ::= LET $var := IR1
IN IR2

It defines an IR-level variable $var and binds it the result of IR1. The variable
can be used anywhere in IR2, in a position of an IR subexpression. At runtime
the tagger will first issue the SQL queries corresponding to IR1 and construct
the XML fragment, XF, then store it in memory. Next, it issues the SQL queries
corresponding to IR2 and inserts a copy of XF whenever possible. As we saw in
Sec. 2, certain order-by clauses may force the optimizer to store multiple XF
fragments, if they are requested in a different order from how they were gener-
ated: we avoid this by imposing restrictions on how LET statements commute
with ORDER BY statements during the first phase of the optimization.

5.4 Phase 3: SQL Rewriting

This phase is the most extensive one consisting of several rewrite rules designed
to optimize the often inefficient generated SQL queries. Our heuristic is to apply
a rewriting if it decreases the cost of the query according to the optimizer 3. If
the necessary hook is not provided to access the optimizer, we attempt to make

3Sophisticated database engines allow us to calculate the estimated cost of a plan very
quickly through SQL Queries
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the query as flat as possible. Generally, only limited capability engines can not
return costs and so this heuristic is usually an improvement.

Aggregate Flattening Optimizations Since XQuery has no explicit group
by clause, queries computing aggregations and group-by are translated into inef-
ficient SQL queries, which need to be optimized. Consider the following typical
example, computing how many surgeries were done in each room:

let $r = distinct-values(/patient/surgery/room/text())
for $x in $r
let $v := /patient/surgery[room/text()=$x]
return <room> <name> { $x } </name>

<cnt> { count($r) } </cnt>
</room>

A direct translation to SQL is:

SELECT x.room, (SELECT count(*)
FROM Surgery z
WHERE x.room=z.room)

FROM (SELECT DISTINCT s.room FROM Surgery s) x

(We have eliminated here some redundant foreign-key joins.) The optimizer
first flattens the nested FROM query then recognizes a group-by construct and
rewrites to:

SELECT s.room, count(*)
FROM Surgery s
GROUP BY s.room

In more complex cases the SQL group-by requires an outer join, and determining
when to use or when not to use an outer join requires a query containment check.
We omit the details.

Flattening Existential Quantifiers We have shown in Sec. 2 how ex-
istential quantifier subqueries arise naturally in the translated SQL queries.
Flattening such subqueries is similar to flattening queries with aggregates, and
we omit further details (but refer the reader to the example in Sec. 2).

Combining both Rules Aggregate and quantifier flattening can be com-
bined, and simplify quite complex queries. The following is a simple illustration.

SELECT COUNT(*)
FROM Patient P
WHERE EXISTS (SELECT * FROM Surgery S

WHERE P.pid = S.pid)

becomes

SELECT COUNT(DISTINCT P.pid)
FROM Patient P, Surgery S
WHERE P.id = S.pid
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Query Minimization The automatically generated SQL queries are some-
times redundant. Redundancy may already be present in the XQuery expres-
sion, such as in the trimming queries described in Sec. 2, or may be introduced
by some optimization, e.g. as a result of flattening. Redundancy is eliminated
through query minimization. We review here briefly the query minimization
problem, and describe our algorithm. For more background we refer the reader
to [1].

The query minimization problem is the following. Given a SQL query of the
form:

SELECT DISTINCT v1, ..., vm
FROM R1 x1, R2 x2, ..., Rn xn
WHERE C1 and C2 and ... and Ck

where each condition Ci is either a selection condition (e.g. x5.A = ‘abc’)
or is a join condition (e.g. x3.B = x9.C). The query is called minimal if there
exists no other equivalent query with fewer than n relations in the FROM clause.
The query minimization problem is: given a SQL query as above, find another
one that is equivalent and minimal.

For example the query:

Q1:
SELECT DISTINCT x.A
FROM R x, S y, R z
WHERE x.B = y.E and x.C = 9 and x.D = ’alpha’
and z.B = y.E and z.D = ’alpha’

is minimized to

Q2:
SELECT DISTINCT u.A
FROM R u, S v
WHERE u.B = v.E and u.C = 9 and u.D = ’alpha’

In other words Q1 and Q2 are equivalent, and there is no other equivalent query
with fewer than two tables in the FROM clause.

To minimize a query Q1 one has to find a table in the FROM clause such that,
denoting Q2 is the query after eliminating that table, Q1 is equivalent to Q2; then
one proceeds by minimizing Q2. The crucial test is whether Q2 is equivalent to
Q1, and this is true iff there exists a homomorphism from the tuple variables of
Q1 to those of Q2. In our example, the homomorphism from Q1 to Q2 maps x to
u, y to v and z to u.

Finding a homomorphism is, in theory, an NP-complete problem, and a naive
algorithm would try to map every tuple variable x in Q1 to every tuple variable
y in Q2, resulting in an exponential running. However, the following simple
heuristic, developed independently though similar to Gottlob [10], dramatically
reduces the search space. Compute a set of pairs C(x,y) where x and y are
tuple variables in Q1 and Q2 respectively: the meaning of C(x,y) is that x is
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“compatible” with x. (1) initially all pairs of variables are in C (2) if x and
y refer to two different table names, then remove (x,y) from C. (3) Repeat
the following, until no more change: consider a pair (x,y) in C, and let x.A
= x’.B be a join condition in Q1. Consider all tuple variables y’ s.t. y.A =
y’.B is a join condition in Q2: if none of the pairs (x’,y’) is in C then remove
(x,y) from C. Once the table C has been computed it suffices to restrict the
search to those homomorphisms that map every tuple variable x only to some
y s.t. (x,y) is in C. While theoretically still exponential in the worst case, this
improved algorithm runs much faster in practice. (For example it runs in linear
time when all table names are distinct.) In all our experiments it always ran in
under one second.

Position Predicates One feature of XQuery are position predicates. These
are very easy to support by native XML engines, but very hard to support by
XML publishing middleware. An example of such a query is:

for $p in /patient
where $x/surgery[1]/hospital_id

= $x/surgery[last()]/hospital_id
return $p/name

This query finds all patients whose first and last recorded surgeries occurred
at the same hospital. The translated SQL is very complex, as we have already
suggested in Sec. 2.

Our solution is to add position information into the relational database. In
our example we would modify the table Surgery and add two attributes, say
p1 and p2 representing the ascending and descending position of that surgery
element. The positioning is relative to the siblings, and is not global: for ex-
ample all surgeries that are the first surgeries of their patient will have p1 = 1,
all second surgeries will have p1 = 2 etc. Similarly last surgeries will have p2
= 1, before-last surgeries have p2 = 2 etc. The values of these attributes must
be precomputed and stored in the relational database.

The question now, is how to inform SilkRoute II of the special meaning of
the two attributes p1 and p2. For this we use the SilkRoute:Order function.
This function allows the user to specify how to compute the ascending and
descending orders for this particular portion of the view or query. The function
is used in the public view definition, and in any derived view definition, as in
the following example:

for $p in CanonicalView()/Patient/row
return {
for $s in CanonicalView()/Surgery/row
where $s/pid = $p/pid
return SilkRoute:Order(
$s/p1,
$s/p2,
$s

}
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Here SilkRoute:Order(a,b,c) returns the value c, but instructs the system
that the attributes a and b represent the ascending position and descending
position respectively.

Using this information during query rewriting is similar to rewriting queries
using views, and here we deploy a simple heuristics based on pattern matching.
In our example, the original query can be translated into the following SQL
query:

SELECT DISTINCT P.pid, P.name
FROM Patient P, Surgery S1, Surgery S2
WHERE P.pid = S1.pid and P.pid = S2.pid
AND S1.p1 = 1 AND S2.p2 = 1 AND S2.hid = S.hid
ORDER BY P.pid

Order of Optimizations The order optimization and position predicate
optimization are performed in the unoptimized SQL. These optimizations are
not cost based, they are applied whenever possible.

When the unoptimized SQL query enters the optimizer, it can appear highly
nested. This nesting renders minimization useless, since minimization requires
set oriented, flat queries. As a result, we apply our flattening rewrite techniques.
These rewritings are applied with a least fixed point semantic. In order to
support older engines, such as older version of MySQL, we prefer to flatten
where clauses before select clauses. This is because we can easily partition nested
selections into multiple queries but do not have support in the middleware for
selections.

We only partition further at this phase if we are required because of older
engines, we do not consider denesting the partition. After flattening, we apply
minimization and execute the query.

6 Experiments

Our experimental validation has three goals. The first is to test the quality of
the SQL queries generated by SilkRoute II, by measuring their efficiency and
scalability. The second is to compare the XQuery to SQL translation approach
to native XQuery processors. And the third is to test the effectiveness of the
various optimizations described in the paper. In all three goals we sought a
validation for a variety of XQuery workloads and a variety of relational and
XQuery platforms.

XQuery workloads We experimented with three workloads(XMark, Hu-
man Brain Project (HBP), and TPC), and report here only the first two.
XMark [17] has 20 XQueries that exercise features such as position predicates,
joins, groupings and user-defined functions, and a synthetic XML generator:
we generated data sets of 10MB, 100MB, and 500MB. To run SilkRoute II, we
designed a relational schema for the XMark XML data, consisting of 15 ta-
bles, and shredded the XML data into these tables. Then, we wrote a public
view to reconstruct the original XML data faithfully, including order. Since

19



Driver UnixODBC 2.2.10
Relational MySQL 4.0.18
database PostgreSQL 7.4
systems SQLServer 8.0

Galax 4.0 (cvs)
Native Saxon 8.1
XQuery QizOpen 0.3
systems Qexo 1.7

QuiLogic IMDB 3.1

Figure 2: Software Versions Used

SilkRoute II applies to XML publishing scenarios with non-recursive schemata.
We ignored the recursive part of the XML data and, hence, did not handle the
XMark Queries 15 and 16.

The Human Brain Project [2] (HBP) is an interesting XML publishing ap-
plication. The original data is in a relational database with 36 tables, and the
Website offers an XQuery interface. The XML view is a complex, hierarchically
structured data. There are 11 canned queries on the Website, and these are the
queries reported in our paper. This workload has some interesting character-
istics not present in XMark. It is characterized by a large number and varied
mixture of structural and relational joins. Most queries are much more complex
than the XMark queries. In order to run the native XML engines on this data
set we materialized the XML public view, and obtained an XML document of
30MB.

Platforms We ran the SQL queries generated by SilkRoute II by connecting
through UnixODBC to one of three relational databases: MySQL, PostgreSQL,
and SQL Server. We ran XQueries natively on five native XML platforms:
Galax (version 4.0 which adds a powerful optimizer), Saxon, QizOpen, Quexo,
and QuiLogic IMDB. All five systems are main memory XQuery processors.
Figure 2 contains all the version numbers.

System All experiments are on a Linux Fedora Core 2 machine with an
SMP build. It has 512MB of RAM and a Pentium 4 2.8Ghz CPU with hyper-
threading. All databases except SQL Server reside on the same machine. We
connect to all databases are connected via UnixODBC. All tests are performed
with only the required database and executable active. All experiments are with
a cold cache.

Experimental Methodology We report end-to-end running time. This
includes disk I/O for relational systems (since we ran with a cold cache) and
parsing time for XML engines. MySQL query evaluation times are very sensitive
to memory load: our numbers represent average runs of the system. All times
are in seconds, and represent averages over several runs.

6.1 Quality of SQL Queries Generated by SilkRoute II

Figures 3,4,5, and 6 show the running times on the 10MB and 100MB XMark
data. We grouped conceptually the XMark queries into three groups: the first
group (queries 1,2,3) are XPath-like queries, the second group (queries 8,9,
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11, 12) represent relational-style queries with joins, while the others have less
crisp features and are not reported here. (Recall that SilkRoute II cannot run
queries 15, 16). The SQL queries we generated performed extremely well, with
occasional hiccups from MySQL, which performed poorly on query 3. On the
100MB data set MySQL also handled query 9 poorly, by choosing an inefficient
plan for a join query. Still, MySQL could execute all queries, which was not the
case for the native XQuery engines.

We also ran XMark on 500MB, but omit this graph since none of the native
XML engines could scale up to 500MB.

Figure 7 shows the running time for HBP. These XQueries include some
simple selection queries and a host of large and many times redundant joins.
We present only the complex structural queries: 8,9,10, and 11. The others are
either simple selections or structurally similar to the queries we present. These
four complex queries ran under 3 seconds on SQL server, under 11 seconds on
PostgreSQL and under 18 seconds on MySQL.

6.2 Comparing SilkRoute II with Native XQuery Engines

The same five figures also report the running times for the five native XQuery
engines. Two remarks are in order. First, only one engine (QuiLogic’s IMDB)
could run on the 100MB XMark, and even then it could execute only some
of the queries. Second, some of these engines to not support the full XQuery,
and could not run some XMark queries or the HBP queries. This is somewhat
ironic, since one expects the support for the full XQuery language to be one of
the strengths of native XQuery engines, over a translated approach. Whenever
a bar for an engine is missing, it means that it could not execute that query on
that data instance, for one of the two reasons above.

When combined with SQL Server SilkRoute II outperformed all native XQuery
engines, in all cases. On PostgreSQL, SilkRoute II also outperformed the na-
tive XQuery engines, with two exceptions, queries 10 and 11 in Fig. 7 where
QizOpen edged ahead. On MySQL, SilkRoute II was generally better, but in a
few cases MySQL ran significantly slower than the best XQuery engines: XMark
queries 3 and 9 on 10MB, and XMark query 3 on 100MB, and HBP queries 9
and 10.

Overall, however, SilkRoute II outperformed significantly the native XQuery
engines. We find this significant: we were expecting the XQuery engines to be
more efficient on small data instances. On the 100MB XMark, some queries
are executing in less than the time it takes for the native XQuery platforms to
handle the 10MB document.

This, of course, is mostly due to the mature technology existing in relational
database system. It also points, however, to the quality of the generated SQL
queries.
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Figure 3: XPath Style (Xmark 10MB)

Figure 4: Relation-Style Joins (XMark 10MB)

Figure 5: XPath Style (Xmark 100MB)
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Figure 6: Relation-Style Joins (XMark 100MB)

Figure 7: HBP Complex Queries
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XMark Q11:
for $p in doc(’Xmark.xml’)/site/people/person
let $l := for $i in

doc(’Xmark.xml’)/site/open_auctions/open_auction/initial
where $p/profile/@income > (5000.0 * $i/text())
return $i

return <items name="{ $p/name/text() }">
{ count($l) }

</items>

Nested SQL Query:
SELECT person.id, (COUNT(*)

FROM open_auction
WHERE p.income > 5000*oa.initial)

FROM person
GROUP BY p.income, p.id
ORDER BY p.id

Flattened SQL Query:
SELECT person.id, COUNT(DISTINCT oa.id)
FROM person p LEFT OUTER JOIN open_auction oa

ON p.income > 5000*oa.initial
GROUP BY p.income, p.id
ORDER BY p.id

Figure 8: XMark Query 11, the Nested and Flat SQL Translation

6.3 Effect of Individual Optimizations

Next we evaluate the effectiveness of some of the optimizations described in
Sec. 5.

Aggregate Flattening Xmark queries 3, 8, and 11 were translated into
highly nested SQL queries. The impact of flattening is as follows:

XMark 3 XMark 8 XMark 11
PostgreSQL 1.80 1.62 240.75
without 1662.56 241.79 291.25
SQLServer 0.92 0.60 97.69 / 280.21 (*)
without 2.50 0.72 102.99

While PostgreSQL and SQL server support nested queries, they did benefit
from flattening. MySQL could not handle nested SQL queries at all, so here
flattening was the only way to make the queries run at all.

It turns out that the only case where applying flattening gave poor results
was Query 11 on SQL Server. This is interesting, so we report the XQuery, the
nested, and the flattened SQL queries in Fig. 8. Notice that there are no equality
statements in the join condition. The SQL Server optimizer generated a better
plan for the nested query. Because we can ask the SQL Server Optimizer, we
are able to issue the better query plan4

Minimization Query minimization affected dramatically HBP query 10:

HBP 10 With HBP 10 With Out
MySQL 67.06 *
PostgreSQL 0.78 22.97
SQLServer 0.85 1.41

4This plan is sophisticated and not a direct analog of any SQL Query. This means that it
would be difficult to coax this same performance out of the other engines
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MySQL without minimization did not complete in an hour. Notice that all
of the data sits in main memory. We see something interesting here, PostgreSQL
also benefits from minimization, but less dramatically. SQL Server benefits the
least. In this case it seems its ability to effectively handle memory has mollified
the effect of poorly written queries.

Loop Invariants The only query affected by this optimization was HBP
10:

HBP 10 without
MySQL 67.06 97.06
PostgreSQL .78 1.02
SQLServer .85 .92

Although more limited in scope in our workloads, this optimization can make
a difference. We view it as a necessary part of a large repertoire of optimization
techniques: when applicable, it eliminates an unnecessary cross-product; when
not applicable, it has no impact.

Position Predicates This optimization dramatically affected XMark queries
2 and 3:

Xmark 2 Xmark 3 Xmark 2 XMark 3
10MB 10MB 100MB 100MB

MySQL 1.62 9.16 132.37 878.76
without 161.29 DNR * DNR
PostgreSQL 0.26 0.30 1.84 1.97
without 16.26 392.93 * *
SQLServer 0.27 0.29 0.53 0.92
without 1.21 8.92 3.76 233.96

DNR indicates the query could not be run without the optimization. A star
indicates that it did not complete within an hour. We notice here that our
predicate rewrites clearly have an effect. Again, more sophisticated optimizers,
like SQL Server, can mollify the effect of difficult queries. Position queries
should be hard for traditional SQL engines since order is not a fundamental
part of the data model. Here we show that there do exist techniques to remedy
some portions of the impedance mismatch.

6.4 Discussion

The experiments demonstrated that it is possible to generate high quality SQL
queries automatically from XQueries, which scale to large data sets, on a vari-
ety of relational database platforms. They also demonstrate that, with today’s
technology, XQueries are significantly faster, and scale to significantly larger
data sets, when translated to SQL and run on relational database engines than
when executed on native XQuery engines. This is always the case with high per-
formance commercial database systems (e.g. SQL Server), and it is true in most
cases with less efficient open-source database systems (MySQL). Surprisingly,
the experiments also demonstrate that our XQuery to SQL translator supports
a richer set of the XQuery language than some of the native XQuery engines.
Finally, the experiments demonstrate the effectiveness of the optimization tech-
niques: in some cases these optimizations made it possible for queries to run at
all, while in other cases it made them dramatically faster.
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7 Related Work

There exists a rich literature on XML publishing and the related XML storage
problem. An excellent survey of both problems is [12].

Two early XML publishing systems are XPeranto and SilkRoute. Xperanto
reuses the DB2 infrastructure to execute queries on XML data [3, 19, 18].
SilkRoute focused on the query translation problem, and on optimizing the
result construction [8, 6, 5]. Pushing XML updates to a relational engine in
the context of XML publishing has been discussed in [20]. MARS [4] describes
advanced translation techniques in the presence of redundant storage.

Besides XPeranto and SilkRoute there has been little work on optimizing
XML publishing. A recent paper [13] discusses two optimizations: eliminating
redundant joins on foreign keys and eliminating complete unions when they can
be replaced with a single query.

Much more work has been done on optimizing XML storage, where the
relational representation may be specifically modified to best support XML
queries. We mention here only two recent pieces of work in [11] and [15].

8 Conclusions

In this paper we have shown that it is feasible to have a highly performant and
largely complete translation of XQuery to SQL. In order to accomplish this, we
have described a novel intermediate representation for relational-to-XML trans-
formations, and have described a framework for optimizing the SQL to XQuery
translation. Our experimental evaluation has found that the optimizations we
develop make the translation of XQuery to SQL more competitive than today’s
native XQuery engines.
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