157 research outputs found

    Intravitreal administration of recombinant human opticin protects against hyperoxia-induced pre-retinal neovascularization

    Get PDF
    Opticin is an extracellular glycoprotein present in the vitreous. Its antiangiogenic properties offer the potential for therapeutic intervention in conditions such as proliferative diabetic retinopathy and retinopathy of prematurity. Here, we investigated the hypothesis that intravitreal administration of recombinant human opticin can safely protect against the development of pathological angiogenesis and promote its regression. We generated and purified recombinant human opticin and investigated its impact on the development and regression of pathological retinal neovascularization following intravitreal administration in murine oxygen-induced retinopathy. We also investigated its effect on normal retinal vascular development and function, following intravitreal injection in neonatal mice, by histological examination and electroretinography. In oxygen-induced retinopathy, intravitreal administration of human recombinant opticin protected against the development of retinal neovascularization to similar extent as aflibercept, which targets VEGF. Opticin also accelerated regression of established retinal neovascularization, though the effect at 18 h was less than that of aflibercept. Intravitreal administration of human recombinant opticin in neonatal mice caused no detectable perturbation of subsequent retinal vascular development or function. In summary we found that intraocular administration of recombinant human opticin protects against the development of pathological angiogenesis in mice and promotes its regression

    Phosphorylation of the Leukemic Oncoprotein EVI1 on Serine 196 Modulates DNA Binding, Transcriptional Repression and Transforming Ability

    Get PDF
    The EVI1 (ecotropic viral integration site 1) gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML) is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA) derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196) in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D), which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain

    BCR and its mutants, the reciprocal t(9;22)-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility

    Get PDF
    BACKGROUND: The reciprocal (9;22) translocation fuses the bcr (breakpoint cluster region) gene on chromosome 22 to the abl (Abelson-leukemia-virus) gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+) the derivative 9+ encodes either the p40((ABL/BCR) )fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96((ABL/BCR) )fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. METHODS: We investigated the effects of BCR and ABL/BCRs i.) on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii.) on the actin cytoskeleton by direct immunofluorescence; and iii) on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. RESULTS: Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. CONCLUSION: Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22) ABL/BCR fusion proteins in comparison to their physiological counterpart BCR

    Genetic aberrations of c-myc and CCND1 in the development of invasive bladder cancer

    Get PDF
    Detrusor muscle invasive transitional cell carcinoma is associated with poor prognosis and is responsible for the majority of bladder cancer related deaths. Amplifications of c-myc and CCND1 are associated with detrusor-muscle-invasive transitional cell carcinoma, however, their precise role in driving disease progression is unclear. Fluorescence in situ hybridisation on archival tissue from 16 patients with primary diagnosis of ⩾pT2 transitional cell carcinoma and 15 cases with primary pTa/pT1 disease subsequently progressing to detrusor-muscle-invasion was performed, in the latter group both pre and post muscle invasive events were studied. No patients presenting with ⩾pT2 had amplification of c-myc, two out of 16 (12.5%) had CCND1 amplification. Of patients who developed ⩾pT2, two out of 15 (13.3%) had amplification of c-myc, both in ⩾pT2, five out of 15 (33.3%) had CCND1 amplification, two in pTa/pT1 tumours, three in ⩾pT2 transitional cell carcinomas. In total, two out of 31 (6.5%) of patients' ⩾pT2 TCCs were amplified for c-myc and six out of 31 (19%) were amplified for CCND1. Eighty-seven per cent (40 out of 46) of tumours were polysomic for chromosome 8 and 80% (37 out of 46) were polysomic for chromosome 11 and this reflected the high copy numbers of c-myc and CCND1 observed. In almost all cases an increase in c-myc/CCND1 copy number occurred prior to invasion and persisted in advanced disease. Amplification of CCND1 or alterations in c-myc/CCND1 early in bladder cancer may have clinical relevance in promoting and predicting progression to detrusor-muscle-invasive transitional cell carcinoma

    The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic reprogramming resulting in enhanced glycolysis is a phenotypic trait of cancer cells, which is imposed by the tumor microenvironment and is linked to the down-regulation of the catalytic subunit of the mitochondrial H<sup>+</sup>-ATPase (β-F1-ATPase). The <it>bioenergetic signature </it>is a protein ratio (β-F1-ATPase/GAPDH), which provides an estimate of glucose metabolism in tumors and serves as a prognostic indicator for cancer patients. Targeting energetic metabolism could be a viable alternative to conventional anticancer chemotherapies. Herein, we document that the <it>bioenergetic signature </it>of isogenic colon cancer cells provides a gauge to predict the cell-death response to the metabolic inhibitors, 3-bromopyruvate (3BrP) and iodoacetate (IA), and the anti-metabolite, 5-fluorouracil (5-FU).</p> <p>Methods</p> <p>The <it>bioenergetic signature </it>of the cells was determined by western blotting. Aerobic glycolysis was determined from lactate production rates. The cell death was analyzed by fluorescence microscopy and flow cytometry. Cellular ATP concentrations were determined using bioluminiscence. Pearson's correlation coefficient was applied to assess the relationship between the <it>bioenergetic signature </it>and the cell death response. <it>In vivo </it>tumor regression activities of the compounds were assessed using a xenograft mouse model injected with the highly glycolytic HCT116 colocarcinoma cells.</p> <p>Results</p> <p>We demonstrate that the <it>bioenergetic signature </it>of isogenic HCT116 cancer cells inversely correlates with the potential to execute necrosis in response to 3BrP or IA treatment. Conversely, the <it>bioenergetic signature </it>directly correlates with the potential to execute apoptosis in response to 5-FU treatment in the same cells. However, despite the large differences observed in the <it>in vitro </it>cell-death responses associated with 3BrP, IA and 5-FU, the <it>in vivo </it>tumor regression activities of these agents were comparable.</p> <p>Conclusions</p> <p>Overall, we suggest that the determination of the <it>bioenergetic signature </it>of colon carcinomas could provide a tool for predicting the therapeutic response to various chemotherapeutic strategies aimed at combating tumor progression.</p

    Direct measurement of local oxygen concentration in the bone marrow of live animals

    Get PDF
    Characterizing how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for therapeutic manipulation of stem cells1. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types2–4. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis5, expression of HIF-1 and related genes6, and staining with surrogate hypoxic markers (e.g. pimonidazole)6–8. Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow (BM) of live mice. Using two-photon phosphorescence lifetime microscopy (2PLM), we determined the absolute pO2 of the BM to be quite low (<32 mmHg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (~9.9 mmHg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change dramatically after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment

    Annexin II represents metastatic potential in clear-cell renal cell carcinoma

    Get PDF
    BACKGROUND: Annexin II (ANX2) is a multi-functional protein involved in cell proliferation and membrane physiology and is related to cancer progression. The purpose of this study was to assess ANX2 expression in clear-cell (cc) renal cell carcinoma (RCC)

    Anthrax Toxins Inhibit Neutrophil Signaling Pathways in Brain Endothelium and Contribute to the Pathogenesis of Meningitis

    Get PDF
    Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood.Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Gro alpha) and CXCL2 (Gro beta), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis.These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies

    Proteome Serological Determination of Tumor-Associated Antigens in Melanoma

    Get PDF
    Proteome serology may complement expression library-based approaches as strategy utilizing the patients' immune responses for the identification pathogenesis factors and potential targets for therapy and markers for diagnosis. Melanoma is a relatively immunogenic tumor and antigens recognized by melanoma-specific T cells have been extensively studied. The specificities of antibody responses to this malignancy have been analyzed to some extent by molecular genetic but not proteomics approaches. We screened sera of 94 melanoma patients for anti-melanoma reactivity and detected seropositivity in two-thirds of the patients with 2–6 antigens per case detected by 1D and an average of 2.3 per case by 2D Western blot analysis. For identification, antigen spots in Western blots were aligned with proteins in 2-DE and analyzed by mass spectrometry. 18 antigens were identified, 17 of which for the first time for melanoma. One of these antigens, galectin-3, has been related to various oncogenic processes including metastasis formation and invasiveness. Similarly, enolase has been found deregulated in different cancers. With at least 2 of 18 identified proteins implicated in oncogenic processes, the work confirms the potential of proteome-based antigen discovery to identify pathologically relevant proteins

    Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis

    Get PDF
    Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopolesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells
    corecore