158 research outputs found

    Dressed for Sex: Red as a Female Sexual Signal in Humans

    Get PDF
    Background: In many non-human primate species, a display of red by a female serves as a sexual signal to attract male conspecifics. Red is associated with sex and romance in humans, and women convey their sexual interest to men through a variety of verbal, postural, and behavioral means. In the present research, we investigate whether female red ornamentation in non-human primates has a human analog, whereby women use a behavioral display of red to signal their sexual interest to men. Methodology/Principal Findings: Three studies tested the hypothesis that women use red clothing to communicate sexual interest to men in profile pictures on dating websites. In Study 1, women who imagined being interested in casual sex were more likely to display red (but not other colors) on their anticipated web profile picture. In Study 2, women who indicated interest in casual sex were more likely to prominently display red (but not other colors) on their actual web profile picture. In Study 3, women on a website dedicated to facilitating casual sexual relationships were more likely to prominently exhibit red (but not other colors) than women on a website dedicated to facilitating marital relationships. Conclusions/Significance: These results establish a provocative parallel between women and non-human female primates in red signal coloration in the mating game. This research shows, for the first time, a functional use of color in women’s sexual self-presentation, and highlights the need to extend research on color beyond physics, physiology, and preference to psychological functioning

    Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer

    Get PDF
    BACKGROUND: New chemotherapy regimens for patients with colorectal cancer have improved survival, but at the cost of clinical toxicity. Oxaliplatin, an agent used in first-line therapy for metastatic colorectal cancer, causes acute and chronic neurotoxicity. This study was performed to carefully assess the incidence, type and duration of oxaliplatin neurotoxicity. METHODS: A detailed questionnaire was completed after each chemotherapy cycle for patients with metastatic colorectal cancer enrolled in a phase I trial of oxaliplatin and capecitabine. An oxaliplatin specific neurotoxicity scale was used to grade toxicity. RESULTS: Eighty-six adult patients with colorectal cancer were evaluated. Acute neuropathy symptoms included voice changes, visual alterations, pharyngo-laryngeal dysesthesia (lack of awareness of breathing); peri-oral or oral numbness, pain and symptoms due to muscle contraction (spasm, cramps, tremors). When the worst neurotoxicity per patient was considered, grade 1/2/3/4 dysesthesias and paresthesias were seen in 71/12/5/0 and 66/20/7/1 percent of patients. By cycles 3, 6, 9, and 12, oxaliplatin dose reduction or discontinuation was needed in 2.7%, 20%, 37.5% and 62.5% of patients. CONCLUSION: Oxaliplatin-associated acute neuropathy causes a variety of distressing, but transient, symptoms due to peripheral sensory and motor nerve hyperexcitability. Chronic neuropathy may be debilitating and often necessitates dose reductions or discontinuation of oxaliplatin. Patients should be warned of the possible spectrum of symptoms and re-assured about the transient nature of acute neurotoxicity. Ongoing studies are addressing the treatment and prophylaxis of oxaliplatin neurotoxicity

    Heterologous Reconstitution of the Intact Geodin Gene Cluster in Aspergillus nidulans through a Simple and Versatile PCR Based Approach

    Get PDF
    Fungal natural products are a rich resource for bioactive molecules. To fully exploit this potential it is necessary to link genes to metabolites. Genetic information for numerous putative biosynthetic pathways has become available in recent years through genome sequencing. However, the lack of solid methodology for genetic manipulation of most species severely hampers pathway characterization. Here we present a simple PCR based approach for heterologous reconstitution of intact gene clusters. Specifically, the putative gene cluster responsible for geodin production from Aspergillus terreus was transferred in a two step procedure to an expression platform in A. nidulans. The individual cluster fragments were generated by PCR and assembled via efficient USER fusion prior to transformation and integration via re-iterative gene targeting. A total of 13 open reading frames contained in 25 kb of DNA were successfully transferred between the two species enabling geodin synthesis in A. nidulans. Subsequently, functions of three genes in the cluster were validated by genetic and chemical analyses. Specifically, ATEG_08451 (gedC) encodes a polyketide synthase, ATEG_08453 (gedR) encodes a transcription factor responsible for activation of the geodin gene cluster and ATEG_08460 (gedL) encodes a halogenase that catalyzes conversion of sulochrin to dihydrogeodin. We expect that our approach for transferring intact biosynthetic pathways to a fungus with a well developed genetic toolbox will be instrumental in characterizing the many exciting pathways for secondary metabolite production that are currently being uncovered by the fungal genome sequencing projects

    Postoperative outcomes in oesophagectomy with trainee involvement

    Get PDF
    BACKGROUND: The complexity of oesophageal surgery and the significant risk of morbidity necessitates that oesophagectomy is predominantly performed by a consultant surgeon, or a senior trainee under their supervision. The aim of this study was to determine the impact of trainee involvement in oesophagectomy on postoperative outcomes in an international multicentre setting. METHODS: Data from the multicentre Oesophago-Gastric Anastomosis Study Group (OGAA) cohort study were analysed, which comprised prospectively collected data from patients undergoing oesophagectomy for oesophageal cancer between April 2018 and December 2018. Procedures were grouped by the level of trainee involvement, and univariable and multivariable analyses were performed to compare patient outcomes across groups. RESULTS: Of 2232 oesophagectomies from 137 centres in 41 countries, trainees were involved in 29.1 per cent of them (n = 650), performing only the abdominal phase in 230, only the chest and/or neck phases in 130, and all phases in 315 procedures. For procedures with a chest anastomosis, those with trainee involvement had similar 90-day mortality, complication and reoperation rates to consultant-performed oesophagectomies (P = 0.451, P = 0.318, and P = 0.382, respectively), while anastomotic leak rates were significantly lower in the trainee groups (P = 0.030). Procedures with a neck anastomosis had equivalent complication, anastomotic leak, and reoperation rates (P = 0.150, P = 0.430, and P = 0.632, respectively) in trainee-involved versus consultant-performed oesophagectomies, with significantly lower 90-day mortality in the trainee groups (P = 0.005). CONCLUSION: Trainee involvement was not found to be associated with significantly inferior postoperative outcomes for selected patients undergoing oesophagectomy. The results support continued supervised trainee involvement in oesophageal cancer surgery

    Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    Get PDF
    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability

    The Wide-field Spectroscopic Telescope (WST) Science White Paper

    Get PDF
    The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integral field spectrograph (IFS). In scientific capability these requirements place WST far ahead of existing and planned facilities. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work synergistically with future ground and space-based facilities. This white paper shows that WST can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; origin of stars and planets; time domain and multi-messenger astrophysics. WST's uniquely rich dataset will deliver unforeseen discoveries in many of these areas. The WST Science Team (already including more than 500 scientists worldwide) is open to the all astronomical community. To register in the WST Science Team please visit https://www.wstelescope.com/for-scientists/participat
    corecore