196 research outputs found

    Biomass of Scyphozoan Jellyfish, and Its Spatial Association with 0-Group Fish in the Barents Sea

    Get PDF
    An 0-group fish survey is conducted annually in the Barents Sea in order to estimate fish population abundance. Data on jellyfish by-catch have been recorded since 1980, although this dataset has never been analysed. In recent years, however, the ecological importance of jellyfish medusae has become widely recognized. In this paper the biomass of jellyfish (medusae) in 0–60 m depths is calculated for the period 1980–2010. During this period the climate changed from cold to warm, and changes in zooplankton and fish distribution and abundance were observed. This paper discusses the less well known ecosystem component; jellyfish medusae within the Phylum Cnidaria, and their spatial and temporal variation. The long term average was ca. 9×108 kg, with some years showing biomasses in excess of 5×109 kg. The biomasses were low during 1980s, increased during 1990s, and were highest in early 2000s with a subsequent decline. The bulk of the jellyfish were observed in the central parts of the Barents Sea, which is a core area for most 0-group fishes. Jellyfish were associated with haddock in the western area, with haddock and herring in the central and coastal area, and with capelin in the northern area of the Barents Sea. The jellyfish were present in the temperature interval 1°C<T<10°C, with peak densities at ca. 5.5°C, and the greatest proportion of the jellyfish occurring between 4.0–7.0°C. It seems that the ongoing warming trend may be favourable for Barents Sea jellyfish medusae; however their biomass has showed a recent moderate decline during years with record high temperatures in the Barents Sea. Jellyfish are undoubtedly an important component of the Barents Sea ecosystem, and the data presented here represent the best summary of jellyfish biomass and distribution yet published for the region

    Role of supplemental foods and habitat structural complexity in persistence and coexistence of generalist predatory mites

    Get PDF
    Variation in the strength of intraguild predation (IGP) may be related to habitat structural complexity and to additional resources outside the narrow predator-prey relationship. We studied the food web interactions on grape, which involves two generalist predatory mites. We evaluated the effects of grape powdery mildew (GPM) as supplemental food, and habitat structural complexity provided by domatia. Our findings suggest that structural and nutritional diversity/complexity promote predatory mite abundance and can help to maintain the beneficial mites - plants association. The effect of these factors on coexistence between predators is influenced by the supplemental food quality and relative differences in body size of interacting species

    Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force

    Get PDF
    Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups

    Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys coriacea): Video Evidence from Animal-Borne Cameras

    Get PDF
    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08–3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83–100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ•d−1 but were as high as 167,797 kJ•d−1 corresponding to turtles consuming an average of 330 kg wet mass•d−1 (up to 840 kg•d−1) or approximately 261 (up to 664) jellyfish•d-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass•d−1 equating to an average energy intake of 3–7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to southward migration

    Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve

    Get PDF
    To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world

    CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes.</p> <p>Methods</p> <p>To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing.</p> <p>Results</p> <p>Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed <it>CADM1 </it>as a compelling candidate gene. Meta-analysis indicated that <it>CADM1 </it>expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines.</p> <p>Conclusion</p> <p>Our study puts <it>CADM1 </it>forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of <it>CADM1 </it>in neuroblastoma development and to investigate the possibility of <it>CADM1 </it>haploinsufficiency in neuroblastoma.</p

    Detection of GD2-positive cells in bone marrow samples and survival of patients with localised neuroblastoma

    Get PDF
    The impact of bone marrow (BM) GD2-positive cells on survival has been evaluated in 145 Italian children with localised neuroblastoma (NB) evaluated at diagnosis by anti-GD2 immunocytochemistry. Nineteen of these (13.1%) were found to be BM GD2-positive, with the number of positive cells ranging between 1 and 155 out of 1 × 106 total cells analysed. Seven/19 (38.8%) GD2-positive vs 12/126 (9.5%) GD2-negative patients relapsed. The 5-year event-free survival (EFS) and overall survival of the GD2-positive patients was significantly worse than that of the GD2-negative ones (62.2 vs 89.9%, P<0.001; and 74.9 vs 95.9%, P=0.005, respectively). GD2 positivity was not associated to other known risk factors, and in particular to Myc-N amplification and 1p deletion. Among Myc-N-negative patients, the EFS of those negative for both GD2 and 1p deletion was significantly better than in children positive for either one of these two markers (EFS=96.9 vs 66.0%, P<0.001). In conclusion, GD2 positivity may represent a prognostic marker for patients with non-metastatic NB without Myc-N amplification, and its combination with genetic alterations might help identifying patients that require a more careful follow-up

    Hormonal signaling in cnidarians : do we understand the pathways well enough to know whether they are being disrupted?

    Get PDF
    Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 5-13, doi:10.1007/s10646-006-0121-1.Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically important as predators, prey and structure-builders. Bioregulatory molecules (e.g., amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used in toxicity testing, but few studies have used cnidarians in explicit testing for signal disruption. Sublethal endpoints developed in cnidarians include budding, regeneration, gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic databases, microarrays and other molecular tools are increasingly facilitating mechanistic investigation of signaling pathways and signal disruption. Elucidation of cnidarian signaling processes in a comparative context can provide insight into the evolution and diversification of metazoan bioregulation. Characterizing signaling and signal disruption in cnidarians may also provide unique opportunities for evaluating risk to valuable marine resources, such as coral reefs
    corecore