32 research outputs found

    The sleep EEG spectrum is a sexually dimorphic marker of general intelligence

    Get PDF
    The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual “EEG fingerprint”. Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 151 healthy individuals, we investigated how intelligence is related to spectral components of full-night sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and REM anterior beta power was found in females but not males. Transient, spindle-like “REM beta tufts” are described in the EEG of healthy subjects, which may reflect the functioning of a recently described cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep

    Corresponding Functional Dynamics across the Hsp90 Chaperone Family: Insights from a Multiscale Analysis of MD Simulations

    Get PDF
    Understanding how local protein modifications, such as binding small-molecule ligands, can trigger and regulate large-scale motions of large protein domains is a major open issue in molecular biology. We address various aspects of this problem by analyzing and comparing atomistic simulations of Hsp90 family representatives for which crystal structures of the full length protein are available: mammalian Grp94, yeast Hsp90 and E.coli HtpG. These chaperones are studied in complex with the natural ligands ATP, ADP and in the Apo state. Common key aspects of their functional dynamics are elucidated with a novel multi-scale comparison of their internal dynamics. Starting from the atomic resolution investigation of internal fluctuations and geometric strain patterns, a novel analysis of domain dynamics is developed. The results reveal that the ligand-dependent structural modulations mostly consist of relative rigid-like movements of a limited number of quasi-rigid domains, shared by the three proteins. Two common primary hinges for such movements are identified. The first hinge, whose functional role has been demonstrated by several experimental approaches, is located at the boundary between the N-terminal and Middle-domains. The second hinge is located at the end of a three-helix bundle in the Middle-domain and unfolds/unpacks going from the ATP- to the ADP-state. This latter site could represent a promising novel druggable allosteric site common to all chaperones

    Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front

    Get PDF
    Reduction of epithelial cell–cell adhesion via the transcriptional repression of cadherins in combination with the acquisition of mesenchymal properties are key determinants of epithelial–mesenchymal transition (EMT). EMT is associated with early stages of carcinogenesis, cancer invasion and recurrence. Furthermore, the tumor stroma dictates EMT through intensive bidirectional communication. The pathological analysis of EMT signatures is critically, especially to determine the presence of cancer cells at the resection margins of a tumor. When diffusion barriers disappear, EMT markers may be detected in sera from cancer patients. The detection of EMT signatures is not only important for diagnosis but can also be exploited to enhance classical chemotherapy treatments. In conclusion, further detailed understanding of the contextual cues and molecular mediators that control EMT will be required in order to develop diagnostic tools and small molecule inhibitors with potential clinical implications
    corecore