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The sleep EEG spectrum is a 
sexually dimorphic marker of 
general intelligence
Péter P. Ujma1,3, Boris N. Konrad   2, Ferenc Gombos3, Péter Simor4,5, Adrián Pótári5, Lisa 
Genzel2,6, Marcel Pawlowski   7, Axel Steiger7, Róbert Bódizs   1,3 & Martin Dresler   2

The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual 
“EEG fingerprint”. Spectral components of EEG were shown to be connected to mental ability both 
in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual 
dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 
151 healthy individuals, we investigated how intelligence is related to spectral components of full-night 
sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and 
REM anterior beta power was found in females but not males. Transient, spindle-like “REM beta tufts” 
are described in the EEG of healthy subjects, which may reflect the functioning of a recently described 
cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a 
negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence 
did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar 
sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep 
are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep.

Intelligence, as expressed by the results of standardized IQ tests such as Raven Advanced Progressive Matrices 
(RAPM) or the Culture Fair Test (CFT), is a statistically and temporally stable trait with a great degree of her-
itability1–3. Such characteristics would imply a strong, well-defined biological basis, however, the precise mech-
anisms through which IQ is implemented in the nervous system remain elusive4–6, and the search for potential 
biological markers is still ongoing.

In recent years, an increasing body of research suggests EEG sleep spindles as a biological marker of intelli-
gence7–14, however the methodology of these studies is quite heterogeneous and their results not always consist-
ent15. Our previous research15–17 confirmed that sleep spindles – particularly sleep spindle amplitude – are indeed 
positively correlated with IQ, although in a sexually dimorphic manner: in children, adolescents as well as adults, 
sleep spindle parameters are preferentially associated with IQ in females.

Some evidence suggests that sleep spindles are not the only potentially relevant electrophysiological biomark-
ers of IQ. First, a relationship between intelligence and wake EEG features such as alpha power, event-related 
alpha desynchronization and coherence has been described18–22. Second, one study7 investigated the correlates 
of IQ not with individually detected sleep spindle events, but with NREM sleep EEG spectral power, and indeed 
found an association between IQ and spectral power well outside the conventional sleep spindle frequency range, 
specifically with theta, alpha and beta power. Uniquely, this study also analyzed REM sleep EEG power, and found 
similar associations with IQ.

Sleep spindles were conceptualized as potential correlates of IQ because of the existence of the sleep EEG spec-
tral fingerprint14,23,24, that is, the inter-individual variability, intra-individual stability and genetic determination 
of the shape of the NREM sleep EEG spectrogram. The reliability of the sleep EEG spectrogram, approximated 
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by within-subject internight correlations, is very high, typically around 0.9 (Tan et al., 2000; Tan et al., 2001; Van 
Dongen et al., 2005). It must be pointed out, however, that these reliability estimates were usually obtained using 
the sleep EEG recordings of healthy, young subjects: therefore, a potential effect of age, sex, minor illnesses or 
other confounders on the reliability of the sleep EEG spectrogram is not known. Originally, the high reliability of 
the sleep EEG spectrogram was demonstrated well outside the sigma range in NREM25–29. Notably, the descrip-
tive parameters30,31 as well as EEG characteristics32,33 of REM sleep are similarly stable and heritable. Therefore, 
the scarcity of data on the relationship between IQ and sleep EEG features other than sleep spindles is somewhat 
surprising.

We hypothesized that REM and NREM spectral features of the sleep encephalogram also outside the sigma 
range are good candidate markers of IQ due to their individual stability and genetic determination. To test this 
hypothesis, we computed EEG spectral power from a large sample of subjects (N = 151) and investigated the 
association of a broad range of REM and NREM EEG spectral features with measurements of intelligence in 
order to find other potential IQ markers in the sleep EEG fingerprint. Given the sexually dimorphic association 
between sleep spindles and IQ15–17, we expected a similar sexual dimorphism also for the relationship between 
EEG spectral power and IQ.

Materials and Methods
Polysomnography data from 151 subjects (68 females, 83 males, mean age 29.3 years, age range 17–69 years) 
was analyzed in this study. Another 9 subjects were excluded due to heavily artifact-contaminated data. Data 
was combined from multiple databases (Max Planck Institute of Psychiatry, Munich, Germany; Institute of 
Behavioural Sciences of Semmelweis University, Budapest, Hungary) for this retrospective multicenter study15,34. 
The research protocols were approved by the Ethical Committee of the Semmelweis University, Budapest, or 
the Ludwig Maximilian University, Munich; and research was carried out in accordance with the Declaration of 
Helsinki. All subjects signed informed consent for the participation in the studies. According to a semi-structured 
interview with experienced psychiatrists or psychologists, all subjects were healthy, had no history of neurologic 
or psychiatric disease, and were free of any current drug effects excluding contraceptives. Consumption of small 
habitual doses of caffeine (max. 2 cups of coffee before noon), but no alcohol was allowed before the recordings. 
6 male and 2 female subjects were light to moderate smokers (self-reported), while the rest of the subjects were 
non-smokers.

Sleep was recorded for two consecutive nights by standard polysomnography, including EEG according to 
the 10–20 system (recordings sites: Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4, T3, T4, T5, T6, O1, and O2, 
re-referenced to mathematically linked mastoids), electro-oculography (EOG), bipolar submental electromy-
ography (EMG), and electrocardiography (ECG). Impedances for the EEG electrodes were kept below 8 kΩ. 
Supplementary Table 1 shows further recording details including the precise distribution of subjects by study 
center. Due to electrode failure, data from a total of 26 electrodes from 21 subjects was excluded and was treated 
as missing data in all subsequent analyses. Electrode failures occurred on Fp1 in 10 cases; Fp2 in 3 cases; F4, F8, 
F7 and T5 in 2 cases; F3, T3, C3, O2 and T6 in 1 case, respectively.

Visual stage scoring on a 20 second basis by according to standard criteria35 and visual artifact rejection 
on a 4 second basis was performed on sleep EEG recordings from the second laboratory nights. Artifact-free 
NREM2 and SWS epochs were analyzed to obtain NREM spectral data, and artifact-free REM epochs were ana-
lyzed to obtain REM spectral data. Spectral analysis was performed by the mixed-radix FFT method using 4 s 
Hanning-tapered windows with a 2 s overlap and averaging power spectral densities from all 4 s windows. Power 
spectral densities were calculated for 0.25 Hz bins from 0 Hz to the Nyquist frequency (sampling rate/2). In all 
analyses, relative log-transformed power spectral density from 1 Hz to 40 Hz was used. This was calculated by 
dividing the amplitude reduction corrected power of each frequency bin of each electrode of the corrected spectra 
in the 1–40 Hz range by the sum of power in all frequency bins in this range, and then replacing each value by its 
10-base logarithm.

EEG recording devices have different analog filter characteristics which results in different machines yielding 
different spectral power densities for the same recording, but it is possible to control for such discrepancies36. We 
connected an analog waveform generator to the C3 and C4 electrode inputs (with original recording reference, 
re-referenced for A1-A2 common references for further analysis) of all EEG devices and applied 40 and 355 μV 
amplitude sinusoid signals of various amplitudes (0.05 Hz, every 0.1 Hz between 0.1–2 Hz, every 1 Hz between 
2–20 Hz, every 10 Hz between 10 Hz-100 Hz). The amplitude reduction rate of each recording system at each 
frequency was determined by calculating the proportion between digital (measured) and analog (generated) 
amplitudes of sinusoid signals at the corresponding frequency. Amplitude reduction rates calculated from 40 and 
355 μV signals were averaged for each frequency, and amplitude reduction rates for intermediate frequencies were 
calculated by spline interpolation using frequency responses at neighboring frequencies. Power spectral density 
values of all frequencies were corrected by dividing the original value by the squared amplitude reduction rate of 
the appropriate recording device at the corresponding frequency.

All subjects completed one or two standardized nonverbal intelligence tests, the Culture Fair Test (CFT) or 
Raven Advanced Progressive Matrices (Raven APM), similar tests of abstract pattern completion which yield 
strongly correlating results and which are particularly good measures of the general factor of intelligence37–39. A 
total of 110 subjects completed the CFT and 81 subjects completed the Raven APM test. 41 subjects completed 
both tests. A composite raw intelligence test score was calculated, expressed as a Raven equivalent score (RES). 
RES for Raven APM tests were equal to the actual raw test score. RES of CFT raw scores were equal to the Raven 
APM score corresponding to the IQ percentile derived from CFT performance and the age of the subject. In case 
of Raven APM and CFT scores both being available, RES were averaged. The 1993 Des Moines (Iowa) standard-
ization of APM was used.
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Pearson’s partial correlation coefficients (correcting for age) were calculated to determine the relationship 
between power spectral density in each frequency bin of each electrode and RES. Since data from neighboring 
electrodes and frequency bins are expected to be strongly correlated, rendering a Bonferroni correction overly 
conservative, multiple comparison correction was performed using the Rüger area method17,40–42. In this method, 
areas of significance are determined along both the spatial and the frequency domain. A Rüger area of potential 
significance extends from the first frequency bin in which a statistical test is significant on any electrode to the last 
frequency bin in which a statistical test is significant on any electrode. Areas of potential significance in which the 
effect was present only on a single electrode or in less than 4 frequency bins (<1 Hz) were not considered in order 
to eliminate the confounding effects of narrow-frequency artifacts or outlier values. If p < 0.05/2 (p < 0.025) for 
at least 50% of significant results, or if p < 0.05/3 (p < 0.016) for at least 33% of significant results within this area, 
then the area is considered statistically significant.

Results
In REM sleep in females, a significant negative partial correlation with delta/theta power and a significant posi-
tive partial correlation with beta power was apparent. Both delta/theta (2.25–5.25 Hz, p < 0.05/2 79.3%, p < 0.05/ 
67.4%, maximum association at 3.5 Hz on F7) and beta (10.25–26.75 Hz, p < 0.05/2 63%, p < 0.05/3 38.3%, max-
imum association at 18.75 Hz on Fz) formed significant Rüger areas (see Fig. 1).

In NREM sleep in females, age-corrected partial Pearson correlation coefficients between RES and NREM 
alpha and sigma power were positive and significant. The associations consisted of two effects overlapping in 
both the spatial and the frequency domain (Fig. 2) with a posterior, left-lateralized alpha (maximum independent 
association 11.75 Hz on T5) and a midline sigma effect (maximum association at 13.75 Hz on Cz). However, the 
overall Rüger area fell slightly short of significance (8–15 Hz, p < 0.05/2 44.44%, p < 0.05/31.11%).

In males, no Rüger significant correlations emerged either in REM or NREM sleep. Figure 3 illustrates the 
maximal partial correlations between relative spectral power and RES in both sexes, while Fig. 4 illustrates the 
topographical distribution of these associations.

In order to provide evidence for different effect sizes in male and female subjects, we compared the correlation 
coefficients of each area of potential significance at the derivation and frequency where the association was max-
imal using Fisher’s r-to-z method. We also considered associations within the NREM Rüger area which fell short 
of significance because of the strong absolute effect sizes and an interest in the discovery of sexually dimorphic 
effects. These comparisons were significant in three cases (NREM 13.75 Hz on Cz: z = 2.22, p = 0.0264; NREM 
11.75 Hz on T5: z = 2.43, p = 0.0151; REM 3.5 Hz on F7: z = −3.67, p = 0.0001), but remained a trend in the 
fourth (REM 18.75 Hz on Fz: z = 1.92, p = 0.0549).

In order to test the robustness of our corrected results, we implemented an alternative, permutation-based 
method of multiple comparisons correction43, using the script made available at https://www.mathworks.com/
matlabcentral/fileexchange/34920-mult-comp-perm-corr. We obtained age-corrected values of both RES and 

Figure 1.  Spectro-correlograms of the age-corrected relationship between relative REM EEG power spectral 
density (by 0.25 Hz bins) and RES by electrode. Axis X represents frequency between 1 Hz and 40 Hz, while 
axis Y shows the partial Pearson correlation coefficient between RES and relative EEG power in the given bin, 
corrected for the effects of age. A horizontal line indicates the critical partial correlation coefficient (p = 0.05) if 
at least one significant correlation is present on the given electrode.

https://www.mathworks.com/matlabcentral/fileexchange/34920-mult-comp-perm-corr
https://www.mathworks.com/matlabcentral/fileexchange/34920-mult-comp-perm-corr
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Figure 2.  Spectro-correlograms of the age-corrected relationship between relative NREM EEG power spectral 
density (by 0.25 Hz bins) and RES by electrode. Axis X represents frequency between 1 Hz and 40 Hz, while 
axis Y shows the partial Pearson correlation coefficient between RES and relative EEG power in the given bin, 
corrected for the effects of age. A horizontal line indicates the critical partial correlation coefficient (p = 0.05) if 
at least one significant correlation is present on the given electrode.

Figure 3.  Scatterplots illustrating the age-corrected relationship between RES and relative EEG power for each 
of the four maximal associations within Rüger areas of potential significance, at the frequency and derivation 
where the absolute value of the partial correlation coefficient was maximal, separated by sex. Data points 
indicate the unstandardized residuals of RES (axis X) and relative power (axis Y) after regressing for the effects 
of age, as the Pearson correlation of these values is equal to the age-corrected partial correlation coefficient of 
the original values.
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spectral power by linearly regressing these values against age and calculating the residuals, and performed 5000 
permutations across subjects and electrodes for each frequency bin in order to obtain the p-values corrected for 
family-wise error. As in our original analysis, we performed this correction separately for NREM and REM sleep 
data, as well as for males and females.

Since this method is sensitive to missing data, we only used spectral data from 12 channels: the 10 electrodes 
common across all subjects (F3, F4, C3, C4, P3, P4, O1 and O2) and Fz and Cz, which were imputed for subjects 
without these electrodes as the average spectral value of F3-F4 and C3-C4, respectively. Any other missing chan-
nels in other subjects were imputed using the average spectral values at neighboring channels in a similar manner. 
Electrodes in the temporal arc (F7, F8, T3, T4, T3 and T6) were not used due to the difficulty of interpolating data 
for these electrodes in the absence of neighboring channels in all but one direction.

This alternative method yielded similar results to the original analysis. In females the correlation between IQ 
scores and NREM spectral power were significant between 10.25–12 Hz (P3, O1) and 13.25–14 Hz (C3, C4, Cz, 
P3, O1, O2), while the correlation between IQ scores and REM spectral power was significant between 3.25–
4.75 Hz (Fp1, Fp2, F3, F4, Fz, C3, C4) and 12.25–19.5 Hz (F3, F4, Fz, C3, C4, Cz, P3, P4).). (Significant frequency 

Figure 4.  The topographical distribution of association strength at the frequencies of maximal association 
illustrated on Fig. 3 in females (left column) and males (right column).
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ranges are reported here as the contiguous series of frequency bins in which the corrected association is signifi-
cant for at least one channel. Channels are mentioned as long as they have at least one significant corrected associ-
ation within a given frequency range. As in the Rüger area method, we ignored significant frequency ranges with 
a significant effect of only one electrode. There was one such frequency range in the REM sleep of males where a 
negative association with 2.75 and 3 Hz spectral power on Fp1 was significant).

This method, unlike the Rüger area approach, reported the female NREM alpha-sigma association as sig-
nificant, and all our maximal correlations represented on Fig. 3 (11.75 Hz and 13.75 Hz for NREM, 3.5 Hz and 
18.75 Hz for REM, all in females only) fell within the range of significant corrected associations with this new 
method. Supplementary Figure S1 reports adjusted p-values in detail.

Discussion
Our results demonstrate that spectral characteristics of sleep EEG are indeed related to measures of intelligence, 
and these associations are not limited to the sigma range: We found significant associations between RES and 
both low (2.25–5.25 Hz) and high (10.25–26.75 Hz) frequency activity in REM sleep, the former of which exhib-
ited statistically significant sexual dimorphism. NREM alpha and sigma associations with RES were significantly 
stronger in females than males, but only reached statistical significance using one of the two methods of multiple 
comparisons correction. Due to the generally high intra-individual reliability of sleep EEG spectral features29, it 
is unlikely that these effects are the result of sex differences in sleep EEG spectrum reliability – that is, lower reli-
ability in males, resulting in the failure of detecting the same association present in females – but in the absence 
of both previous studies concerning this question and EEG data from multiple nights in our own dataset this 
remains a theoretical possibility.

REM sleep.  We wish to use REM beta activity – according to our results, a positive correlate of general intel-
ligence – as an example of a functionally important, but severely under-researched oscillation. Beta EEG activity 
is an inherent part of the electrical activity patterns of cortical structures in REM sleep44–46. The relationship 
between REM beta activity and cognitive performance has been previously shown in patient populations47–49. 
However, beta activity in REM sleep often does not appear as background activity (comparable to wakefulness), 
but rather in transient bouts not unlike sleep spindles (see Fig. 5). Such “REM beta tufts” are often readily visible 
in the EEG and they are obvious contributors to the REM beta spectral power which was shown here to correlate 
with general intelligence.

Similar beta oscillations have recently been described to be visible over the anterior cingulate and the dorso-
lateral prefrontal cortex in a small clinical sample with cortically implanted electrodes50. The authors speculate 
that these cortical areas are active during REM sleep and contribute to cognitive functions such as motor memory 
consolidation and emotion regulation. While our data are not suited to directly test this hypothesis, the reported 
frontal topography, frequency range and visual appearance of these oscillations is very similar to what we found 
in the scalp EEG recordings of healthy subjects, and their association with general intelligence highlights their 
functional importance for cognition.

NREM sleep.  Only one previous study exists about the NREM spectral power correlates of IQ outside the 
sigma range7. While the authors do not attempt to explain this relationship in detail and express doubts about the 
generalizability of this finding to adult populations, we found a similar relationship in our sample spanning a wide 

Figure 5.  Top: Sample EEG in REM sleep, showing transient bouts of beta activity (“REM beta tufts”). Bottom: 
spectral composition of the highlighted signal (frequency in Hz, spectral power in arbitrary units).
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age range, even though it was significant using only one of the two methods of correcting for multiple compar-
isons. Notably, the tendencies observed in our study were significantly larger in females compared to males and 
exhibited a maximum at approximately 13.5 Hz, in line with our previous results about the sexually dimorphic 
relationship between sleep spindles and IQ15–17. However, this association was only significant according to the 
bootstrapping method for multiple comparisons correction, and not using the Rüger areas. The Rüger area is 
imperfectly suited to disentangle separate effects which smoothly morph together along both the frequency and 
the spatial domain as it was the case here, evidenced by the presence of two separate areas (alpha and sigma) of 
association using the bootstrapping method. NREM associations must be interpreted very carefully due to the 
lack of agreement on their significance across correction methods.

Sleep quality.  Tentatively, one may assume that the significant association between IQ and REM beta power 
and the tendency-level association with NREM alpha power are both indicative of the same phenomenon: a 
decrease in sleep quality. High frequency activity in both NREM and REM sleep is generally interpreted as a sign 
of poor sleep quality51 or a sensitive marker of sleep fragility and environmental awareness during sleep52, and it 
was found in patients with insomnia53,54 or fibromyalgia55,56. However, the function and significance of NREM 
alpha activity may depend on its topography51, and REM beta has also been associated with positive outcomes, 
that is, lower nightmare severity and more benign PTSD symptoms57. Furthermore, low-frequency and beta 
activity in REM sleep are inversely associated44–46, and a pattern of less low frequency and more beta activity, like 
we observed in the present study, is associated with better functioning in Alzheimer’s disease, potentially reflect-
ing more intact cholinergic pathways47,49,58. It is notable that sleep macrostructure parameters were not signifi-
cantly correlated with RES in either sex and with or without correcting for the effects of age. In sum, there is little 
evidence that higher NREM alpha and REM beta and lower REM delta in more intelligent female subjects is a 
sign of poor quality, but it can be speculated that it is associated with an information processing network which is 
also affected in neurodegenerative diseases. Unfortunately, the lack of previous studies describing the functional 
importance of the non-sigma elements of the sleep EEG fingerprint associated with intelligence hinders a more 
detailed interpretation of our findings.

General perspective.  Despite its excellent psychometric properties59–61 and importance for a great variety 
of life outcomes not limited to the cognitive domain62–64 the physiological underpinnings of general intelligence 
remain elusive. Some of the generally replicated physiological parameters associated with intelligence are head/
brain size65, neural efficiency20, sleep spindle measures15 and structural and functional imaging properties of 
widespread cerebral areas5, including connectivity patterns66, in approximately descending order of the reliability 
of association. The elusive nature of general intelligence is perhaps best highlighted by genetic studies, which are 
important not only because they explain the difficulty of finding a single physiological mechanism behind intel-
ligence, but also because they tend to have the greatest statistical power with sample sizes typically in the tens or 
hundreds of thousands.

General intelligence is very strongly heritable3,67, with twin study heritability estimates for adult intelligence 
of 0.6–0.8. This high heritability indicates that genetically regulated biological functions are a good target for 
finding putative mechanisms behind general intelligence. However, genome-wise association studies (GWAS) 
only revealed statistically significant SNPs associated with intelligence68,69 or the strongly correlated years in edu-
cation70,71 when extremely large sample sizes were used, indicating that even the strongest single genetic vari-
ants have very small effects. Genome-wise complex trait analysis (GCTA)72–75 confirms the strong heritability 
of intelligence, but also the fact that this heritability is the largely additive total effect of many genetic variants 
with extremely small individual effects, including family-specific rare genetic variations with negative effects76–78. 
Furthermore, the genetic variants associated with intelligence are highly pleiotropic, evidenced by the strong 
genetic correlation between intelligence and phenotypically correlated traits, such as LDL cholesterol levels, the 
risk of diabetes and cardiovascular conditions, poverty, obesity, depression, anxiety and schizophrenia (negative 
correlations) and HDL cholesterol levels, household income, years in education, height and head size (positive 
correlations)79,80. Little is known about the precise effects of the associated SNPs (or those they are in linkage 
with), although they are preferentially expressed in the central nervous system69,70. Two studies73,74 established a 
connection between the FNBP1L gene and general intelligence. The plexin gene family, implicated in axon guid-
ance during neural growth, was implicated in extremely high intelligence81 but this effect was not replicated in 
the general population. The importance of neurogenesis-promoting genetic variants for general intelligence has 
been confirmed by a recent highly powered study68, which is well in line with the observed effect of intelligence in 
longitudinal cerebral development82, the stabilization of intelligence by the end of adolescent development3,67 and 
the strong genetic correlation between childhood and adult general intelligence83,84.

Unfortunately, if general intelligence if primarily determined by a large number of highly pleiotropic genetic 
variants with small individual effects, then the prospects of finding well-delineated physiological mechanisms 
underlying intelligence are poor in studies with sample sizes typical for behavioral neuroscience (N < 1000). 
However, measures which themselves reflect the functioning of complex neural systems might be exceptions as 
they capture the end product of complicated genetic pathways involving complementary and possible substitut-
able mechanisms. The sleep EEG is a good candidate for such a measure, given its high individual stability24,27,85, 
strong genetic determination27,32,86 and the fact that it reflects the events in large, functionally connected neural 
assemblies free from contamination by wakeful mentation and movement artifacts.

Our results confirm that activity in the sleep spindle-related sigma frequency range is related to intelligence. 
Sleep spindles are among the most genetically determined parts of the sleep EEG spectrum86, therefore, this 
association is unsurprising. However, reductions in sleep spindles are observed in a very wide variety of neuro-
logical and psychiatric conditions as well, including schizophrenia87,88 and Alzheimer’s disease89, indicating that 
sleep spindles resemble a non-specific marker of the integrity of the central nervous system. Future studies with 
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available sleep EEG, intelligence and genetic data may investigate whether common variants associated with years 
in education70 or cognitive ability69 are also associated with sleep spindles, which would indicate that one of the 
effects of these variants is promoting a more efficient form of thalamocortical communication and thus propose 
a genetically mediated physiological mechanism of general intelligence. Alternatively, if sleep spindles are neg-
atively associated with rare genetic variants76–78 then a more likely explanation is that mutational load is similar 
to neurological and psychiatric disease as a non-specific reducer of sleep spindle activity, and the association 
between sleep spindles and intelligence is also due to non-specific genetic effects. Little is known, however, about 
the generating mechanisms of the other oscillations we found to be associated with intelligence, therefore, their 
further study is recommended in order to elucidate their potential contributing mechanism to cognitive ability

Conclusions
Overall, our results suggest that 1.) a wide range of spectral features in the sleep EEG are associated with intelli-
gence, suggesting that the relationship between sleep EEG and IQ go well beyond sleep spindles and 2.) just like 
sleep spindles, other spectral characteristics of the sleep EEG are also associated with IQ in a sexually dimorphic 
manner, suggesting that sleep oscillations in general are more related to cognitive performance in women than 
men. Arguably, the vast majority of scalp EEG studies in healthy human subjects have focused on either slow 
waves or sleep spindles. Our results demonstrate that the potential functional relevance of other oscillations, 
most notably REM beta oscillations50, which are also trait-like and thus possible markers of individual differences, 
might have been underestimated. Since much research is still needed in order to understand why less-researched 
NREM or REM oscillations reflect individual differences, it would be important to conduct studies aimed to 
either replicate these findings or to elucidate the precise neurophysiology behind NREM alpha or REM beta oscil-
lations. Similarly, future analyses are suggested for finding the potential correlates of intelligence in the sleep EEG 
of males. While power spectral density is not correlated with intelligence in males, other measures of sleep EEG 
may be. In line with wake EEG results22,90, EEG phase locking, coherence and regional asymmetries are suggested 
as candidate measures. However, our results suggest that intelligence – even if measured by the same tests – has 
different neural substrates in males and females.
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