2,508 research outputs found
Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions
Euclidean gravity method has been successful in computing logarithmic
corrections to extremal black hole entropy in terms of low energy data, and
gives results in perfect agreement with the microscopic results in string
theory. Motivated by this success we apply Euclidean gravity to compute
logarithmic corrections to the entropy of various non-extremal black holes in
different dimensions, taking special care of integration over the zero modes
and keeping track of the ensemble in which the computation is done. These
results provide strong constraint on any ultraviolet completion of the theory
if the latter is able to give an independent computation of the entropy of
non-extremal black holes from microscopic description. For Schwarzschild black
holes in four space-time dimensions the macroscopic result seems to disagree
with the existing result in loop quantum gravity.Comment: LaTeX, 40 pages; corrected small typos and added reference
Logarithmic correction to BH entropy as Noether charge
We consider the role of the type-A trace anomaly in static black hole
solutions to semiclassical Einstein equation in four dimensions. Via Wald's
Noether charge formalism, we compute the contribution to the entropy coming
from the anomaly induced effective action and unveil a logarithmic correction
to the Bekenstein-Hawking area law.
The corrected entropy is given by a seemingly universal formula involving the
coefficient of the type-A trace anomaly, the Euler characteristic of the
horizon and the value at the horizon of the solution to the uniformization
problem for Q-curvature. Two instances are examined in detail: Schwarzschild
and a four-dimensional massless topological black hole. We also find agreement
with the logarithmic correction due to one-loop contribution of conformal
fields in the Schwarzschild background.Comment: 14 pages, JHEP styl
Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage
Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates.- Background - Results -- Authentication of a preserved oral biofilm in calculus samples -- Dental calculus and plaque biofilm communities are distinct -- Health-associated communities of dental plaque and calculus are distinct -- Signatures of health and of disease are shared in modern and historic calculus samples -- Microbial community differences between health and disease in calculus are poorly resolved -- Absence of caries-specific microbial profiles in dental calculus -- Microbial co-exclusion patterns in plaque and calculus reflect biofilm maturity -- Microbial complexes in plaque and calculus -- Functional prediction in calculus is poorly predictive of health status -- Proteomic profiles of historic healthy site calculus -- Correlations between taxonomic, proteomic, and metabolomic profiles - Discussion - Conclusions - Materials and methods --Historic and modern calculus sample collection DNA extraction -- DNA library construction and high-throughput sequencing -- DNA sequence processing -- Genetic assessment of historic calculus sample preservation -- Genetic microbial taxonomic profiling -- Principal component analysis -- Assessment of differentially abundant taxa -- Sparse partial least squares-discriminant analysis -- Assessment of microbial co-exclusion patterns -- Gene functional categorization with SEED -- Proteomics -- Metabolomics -- Regularized canonical correlation analysi
Flood fragility analysis for bridges with multiple failure modes
Bridges are one of the most important infrastructure systems that provide public and economic bases for humankind. It is also widely known that bridges are exposed to a variety of flood-related risk factors such as bridge scour, structural deterioration, and debris accumulation, which can cause structural damage and even failure of bridges through a variety of failure modes. However, flood fragility has not received as much attention as seismic fragility despite the significant amount of damage and costs resulting from flood hazards. There have been few research efforts to estimate the flood fragility of bridges considering various flood-related factors and the corresponding failure modes. Therefore, this study proposes a new approach for bridge flood fragility analysis. To obtain accurate flood fragility estimates, reliability analysis is performed in conjunction with finite element analysis, which can sophisticatedly simulate the structural response of a bridge under a flood by accounting for flood-related risk factors. The proposed approach is applied to a numerical example of an actual bridge in Korea. Flood fragility curves accounting for multiple failure modes, including lack of pier ductility or pile ductility, pier rebar rupture, pile rupture, and deck loss, are derived and presented in this study.ope
Extraordinary absorption of sound in porous lamella-crystals
We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.The work was supported by the Spanish Ministry of Science and Innovation and European Union FEDER through project FIS2011-29734-C02-01. J.C. gratefully acknowledges financial support from the Danish Council for Independent Research and a Sapere Aude grant (12-134776). V. R. G. gratefully acknowledges financial support from the ''Contratos Post-Doctorales Campus Excelencia Internacional'' UPV CEI-01-11.Christensen, J.; Romero García, V.; Picó Vila, R.; Cebrecos Ruiz, A.; Garcia De Abajo, FJ.; Mortensen, NA.; Willatzen, M.... (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports. 4(4674). https://doi.org/10.1038/srep04674S44674Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).Leroy, V., Strybulevych, A., Scanlon, M. G. & Page, J. Transmission of ultrasound through a single layer of bubbles. Eur. Phys. J. E 29, 123 (2009).Leroy, V., Bretagne, A., Fink, M. H. W., Tabeling, P. & Tourin, A. Design and characterization of bubble phononic crystals. Appl. Phys. Lett. 95, 171904 (2009).Thomas, E. L. Applied physics: Bubbly but quiet. Nature 462, 990 (2009).Romero-García, V., Sánchez-Pérez, J. V. & Garcia-Raffi, L. M. Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. J. Appl. Phys. 110, 014904 (2011).Garcia-Chocano, V. M., Cabrera, S. & Sanchez-Dehesa, J. Broadband sound absorption by lattices of microperforated cylindrical shells. Appl. Phys. Lett. 101, 184101 (2012).Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993).Vasseur, J. O. et al. Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals. Phys. Rev. Lett. 86, 3012 (2001).Liu, Z. et al. Locally Resonant Sonic Materials. Science 289, 1734 (2000).Christensen, J., Martin-Moreno, L. & Garcia-Vidal, F. J. All-angle blockage of sound by an acoustic double-fishnet metamaterial. Appl. Phys. Lett. 97, 134106 (2010).Botten, L. C., Craig, M. S., McPhedran, R. C., Adams, J. L. & Andrewartha, J. R. The finitely conducting lamellar diffraction grating. Optica Acta 28, 1087 (1981).McPhedran, R. C., Botten, L. C., Craif, M. S., Neviere, M. & Maystre, D. Lossy lamellar gratings in the quasistatic limit. Optica Acta 29, 289 (1982).Kravets, V. G., Schedin, F. & Grigorenko, A. N. Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings. Phys. Rev. B 78, 205405 (2008).Sondergaard, T. et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun. 3, 969 (2012).Clapham, P. B. & Hurtley, M. C. Reduction of Lens Reflexion by the Moth Eye Principle. Nature Vol. 244, 281 (1973).Garcia-Vidal, F. J., Pitarke, J. M. & Pendry, J. B. Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes. Phys. Rev. Lett. 78, 4289 (1997).Yang, Z., Ci, L., Bur, J. A., Lin, S. & Ajayan, P. M. Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array. Nano Lett. 8, 446 (2008).Garcia-Vidal, F. J. Metamaterials: Towards the dark side. Nat. Photonics 2, 215 (2008).Mizunoa, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106, 6044 (2009).Lidorkis, E. & Ferrari, A. C. Photonics with Multiwall Carbon Nanotube Arrays. ACS Nano 3, 1238 (2009).Beenakker, C. W. J. & Brouwer, P. W. Distribution of the reflection eigenvalues of a weakly absorbing chaotic cavity. Physica E 9, 463 (2001).Lafarge, D., Lemarinier, P., Allard, J. F. & Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102, 1995 (1997), With the macroscopic parameters: ϕ = 0.94, α∞ = 1, σ = 20000 Nm−4s and Λ = Λ′ = 0.41 μm.García de Abajo, F. J. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007)
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Recommended from our members
Planck 2015 results: XXVI. The Second Planck Catalogue of Compact Sources
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC)
- …
