416 research outputs found
Combinatorial RNA Design: Designability and Structure-Approximating Algorithm
In this work, we consider the Combinatorial RNA Design problem, a minimal
instance of the RNA design problem which aims at finding a sequence that admits
a given target as its unique base pair maximizing structure. We provide
complete characterizations for the structures that can be designed using
restricted alphabets. Under a classic four-letter alphabet, we provide a
complete characterization of designable structures without unpaired bases. When
unpaired bases are allowed, we provide partial characterizations for classes of
designable/undesignable structures, and show that the class of designable
structures is closed under the stutter operation. Membership of a given
structure to any of the classes can be tested in linear time and, for positive
instances, a solution can be found in linear time. Finally, we consider a
structure-approximating version of the problem that allows to extend bands
(helices) and, assuming that the input structure avoids two motifs, we provide
a linear-time algorithm that produces a designable structure with at most twice
more base pairs than the input structure.Comment: CPM - 26th Annual Symposium on Combinatorial Pattern Matching, Jun
2015, Ischia Island, Italy. LNCS, 201
Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment
Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique
in bioinformatics used to infer related residues among biological sequences.
Thus alignment accuracy is crucial to a vast range of analyses, often in ways
difficult to assess in those analyses. To compare the performance of different
aligners and help detect systematic errors in alignments, a number of
benchmarking strategies have been pursued. Here we present an overview of the
main strategies--based on simulation, consistency, protein structure, and
phylogeny--and discuss their different advantages and associated risks. We
outline a set of desirable characteristics for effective benchmarking, and
evaluate each strategy in light of them. We conclude that there is currently no
universally applicable means of benchmarking MSA, and that developers and users
of alignment tools should base their choice of benchmark depending on the
context of application--with a keen awareness of the assumptions underlying
each benchmarking strategy.Comment: Revie
“Avoiding or approaching eyes”? Introversion/extraversion affects the gaze-cueing effect
We investigated whether the extra-/introversion personality dimension can influence processing of others’ eye gaze direction and emotional facial expression during a target detection task. On the basis of previous evidence showing that self-reported trait anxiety can affect gaze-cueing with emotional faces, we also verified whether trait anxiety can modulate the influence of intro-/extraversion on behavioral performance. Fearful, happy, angry or neutral faces, with either direct or averted gaze, were presented before the target appeared in spatial locations congruent or incongruent with stimuli’s eye gaze direction. Results showed a significant influence of intra-/extraversion dimension on gaze-cueing effect for angry, happy, and neutral faces with averted gaze. Introverts did not show the gaze congruency effect when viewing angry expressions, but did so with happy and neutral faces; extraverts showed the opposite pattern. Importantly, the influence of intro-/extraversion on gaze-cueing was not mediated by trait anxiety. These findings demonstrated that personality differences can shape processing of interactions between relevant social signals
Clusters of galaxies : observational properties of the diffuse radio emission
Clusters of galaxies, as the largest virialized systems in the Universe, are
ideal laboratories to study the formation and evolution of cosmic
structures...(abridged)... Most of the detailed knowledge of galaxy clusters
has been obtained in recent years from the study of ICM through X-ray
Astronomy. At the same time, radio observations have proved that the ICM is
mixed with non-thermal components, i.e. highly relativistic particles and
large-scale magnetic fields, detected through their synchrotron emission. The
knowledge of the properties of these non-thermal ICM components has increased
significantly, owing to sensitive radio images and to the development of
theoretical models. Diffuse synchrotron radio emission in the central and
peripheral cluster regions has been found in many clusters. Moreover
large-scale magnetic fields appear to be present in all galaxy clusters, as
derived from Rotation Measure (RM) studies. Non-thermal components are linked
to the cluster X-ray properties, and to the cluster evolutionary stage, and are
crucial for a comprehensive physical description of the intracluster medium.
They play an important role in the cluster formation and evolution. We review
here the observational properties of diffuse non-thermal sources detected in
galaxy clusters: halos, relics and mini-halos. We discuss their classification
and properties. We report published results up to date and obtain and discuss
statistical properties. We present the properties of large-scale magnetic
fields in clusters and in even larger structures: filaments connecting galaxy
clusters. We summarize the current models of the origin of these cluster
components, and outline the improvements that are expected in this area from
future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics
Review. 58 pages, 26 figure
Cluster randomised controlled trial of a peer-led lifestyle intervention program: study protocol for the Kerala diabetes prevention program.
BACKGROUND: India currently has more than 60 million people with Type 2 Diabetes Mellitus (T2DM) and this is predicted to increase by nearly two-thirds by 2030. While management of those with T2DM is important, preventing or delaying the onset of the disease, especially in those individuals at 'high risk' of developing T2DM, is urgently needed, particularly in resource-constrained settings. This paper describes the protocol for a cluster randomised controlled trial of a peer-led lifestyle intervention program to prevent diabetes in Kerala, India. METHODS/DESIGN: A total of 60 polling booths are randomised to the intervention arm or control arm in rural Kerala, India. Data collection is conducted in two steps. Step 1 (Home screening): Participants aged 30-60 years are administered a screening questionnaire. Those having no history of T2DM and other chronic illnesses with an Indian Diabetes Risk Score value of ≥60 are invited to attend a mobile clinic (Step 2). At the mobile clinic, participants complete questionnaires, undergo physical measurements, and provide blood samples for biochemical analysis. Participants identified with T2DM at Step 2 are excluded from further study participation. Participants in the control arm are provided with a health education booklet containing information on symptoms, complications, and risk factors of T2DM with the recommended levels for primary prevention. Participants in the intervention arm receive: (1) eleven peer-led small group sessions to motivate, guide and support in planning, initiation and maintenance of lifestyle changes; (2) two diabetes prevention education sessions led by experts to raise awareness on T2DM risk factors, prevention and management; (3) a participant handbook containing information primarily on peer support and its role in assisting with lifestyle modification; (4) a participant workbook to guide self-monitoring of lifestyle behaviours, goal setting and goal review; (5) the health education booklet that is given to the control arm. Follow-up assessments are conducted at 12 and 24 months. The primary outcome is incidence of T2DM. Secondary outcomes include behavioural, psychosocial, clinical, and biochemical measures. An economic evaluation is planned. DISCUSSION: Results from this trial will contribute to improved policy and practice regarding lifestyle intervention programs to prevent diabetes in India and other resource-constrained settings. TRIAL REGISTRATION: Australia and New Zealand Clinical Trials Registry: ACTRN12611000262909
The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA
<p>Abstract</p> <p>Background</p> <p>In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design.</p> <p>Results</p> <p>RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%.</p> <p>Conclusion</p> <p>To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (<it>ViennaPackage </it>– 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU.</p
Comprehensive characterization of immune landscape of Indian and Western triple negative breast cancers.
PURPOSE: Triple-negative breast cancer (TNBC) is a heterogeneous disease with a significant challenge to effectively manage in the clinic worldwide. Immunotherapy may be beneficial to TNBC patients if responders can be effectively identified. Here we sought to elucidate the immune landscape of TNBCs by stratifying patients into immune-specific subtypes (immunotypes) to decipher the molecular and cellular presentations and signaling events of this heterogeneous disease and associating them with their clinical outcomes and potential treatment options. EXPERIMENTAL DESIGN: We profiled 730 immune genes in 88 retrospective Indian TNBC samples using the NanoString platform, established immunotypes using non-negative matrix factorization-based machine learning approach, and validated them using Western TNBCs (n=422; public datasets). Immunotype-specific gene signatures were associated with clinicopathological features, immune cell types, biological pathways, acute/chronic inflammatory responses, and immunogenic cell death processes. Responses to different immunotherapies associated with TNBC immunotypes were assessed using cross-cancer comparison to melanoma (n=504). Tumor-infiltrating lymphocytes (TILs) and pan-macrophage spatial marker expression were evaluated. RESULTS: We identified three robust transcriptome-based immunotypes in both Indian and Western TNBCs in similar proportions. Immunotype-1 tumors, mainly representing well-known claudin-low and immunomodulatory subgroups, harbored dense TIL infiltrates and T-helper-1 (Th1) response profiles associated with smaller tumors, pre-menopausal status, and a better prognosis. They displayed a cascade of events, including acute inflammation, damage-associated molecular patterns, T-cell receptor-related and chemokine-specific signaling, antigen presentation, and viral-mimicry pathways. On the other hand, immunotype-2 was enriched for Th2/Th17 responses, CD4+ regulatory cells, basal-like/mesenchymal immunotypes, and an intermediate prognosis. In contrast to the two T-cell enriched immunotypes, immunotype-3 patients expressed innate immune genes/proteins, including those representing myeloid infiltrations (validated by spatial immunohistochemistry), and had poor survival. Remarkably, a cross-cancer comparison analysis revealed the association of immunotype-1 with responses to anti-PD-L1 and MAGEA3 immunotherapies. CONCLUSION: Overall, the TNBC immunotypes identified in TNBCs reveal different prognoses, immune infiltrations, signaling, acute/chronic inflammation leading to immunogenic cell death of cancer cells, and potentially distinct responses to immunotherapies. The overlap in immune characteristics in Indian and Western TNBCs suggests similar efficiency of immunotherapy in both populations if strategies to select patients according to immunotypes can be further optimized and implemented
Genetic Control of Susceptibility to Infection with Candida albicans in Mice
Candida albicans is an opportunistic pathogen that causes acute disseminated infections in immunocompromised hosts, representing an important cause of morbidity and mortality in these patients. To study the genetic control of susceptibility to disseminated C. albicans in mice, we phenotyped a group of 23 phylogenetically distant inbred strains for susceptibility to infection as measured by extent of fungal replication in the kidney 48 hours following infection. Susceptibility was strongly associated with the loss-of-function mutant complement component 5 (C5/Hc) allele, which is known to be inherited by approximately 40% of inbred strains. Our survey identified 2 discordant strains, AKR/J (C5-deficient, resistant) and SM/J (C5-sufficient, susceptible), suggesting that additional genetic effects may control response to systemic candidiasis in these strains. Haplotype association mapping in the 23 strains using high density SNP maps revealed several putative loci regulating the extent of C. albicans replication, amongst which the most significant were C5 (P value = 2.43×10−11) and a novel effect on distal chromosome 11 (P value = 7.63×10−9). Compared to other C5-deficient strains, infected AKR/J strain displays a reduced fungal burden in the brain, heart and kidney, and increased survival, concomitant with uniquely high levels of serum IFNγ. C5-independent genetic effects were further investigated by linkage analysis in an [A/JxAKR/J]F2 cross (n = 158) where the mutant Hc allele is fixed. These studies identified a chromosome 11 locus (Carg4, Candida albicans resistance gene 4; LOD = 4.59), and a chromosome 8 locus (Carg3; LOD = 3.95), both initially detected by haplotype association mapping. Alleles at both loci were inherited in a co-dominant manner. Our results verify the important effect of C5-deficiency in inbred mouse strains, and further identify two novel loci, Carg3 and Carg4, which regulate resistance to C. albicans infection in a C5-independent manner
- …
