In this work, we consider the Combinatorial RNA Design problem, a minimal
instance of the RNA design problem which aims at finding a sequence that admits
a given target as its unique base pair maximizing structure. We provide
complete characterizations for the structures that can be designed using
restricted alphabets. Under a classic four-letter alphabet, we provide a
complete characterization of designable structures without unpaired bases. When
unpaired bases are allowed, we provide partial characterizations for classes of
designable/undesignable structures, and show that the class of designable
structures is closed under the stutter operation. Membership of a given
structure to any of the classes can be tested in linear time and, for positive
instances, a solution can be found in linear time. Finally, we consider a
structure-approximating version of the problem that allows to extend bands
(helices) and, assuming that the input structure avoids two motifs, we provide
a linear-time algorithm that produces a designable structure with at most twice
more base pairs than the input structure.Comment: CPM - 26th Annual Symposium on Combinatorial Pattern Matching, Jun
2015, Ischia Island, Italy. LNCS, 201