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Abstract 

Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique in 

bioinformatics used to infer related residues among biological sequences. Thus 
alignment accuracy is crucial to a vast range of analyses, often in ways difficult to assess 

in those analyses. To compare the performance of different aligners and help detect 
systematic errors in alignments, a number of benchmarking strategies have been 

pursued. Here we present an overview of the main strategies—based on simulation, 

consistency, protein structure, and phylogeny—and discuss their different advantages 
and associated risks. We outline a set of desirable characteristics for effective 

benchmarking, and evaluate each strategy in light of them. We conclude that there is 

currently no universally applicable means of benchmarking MSA, and that developers 
and users of alignment tools should base their choice of benchmark depending on the 

context of application—with a keen awareness of the assumptions underlying each 
benchmarking strategy. 
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1. Introduction 

Multiple sequence alignment (MSA) has become a common first step in the analysis 

of sequence data for downstream applications such as comparative genomics, functional 

analysis and phylogenetic reconstruction. Given their importance, MSA methods need to be 

objectively validated in order to ensure their output is both accurate and reproducible. 

Benchmarking is a crucial tool in the assessment of sequence alignment programs, as it 

allows their developers and users to compare the performance of different aligners 

objectively, identify strengths and weaknesses and help detect systematic errors in 

alignments. In recent years, there has been a growing appreciation of the importance of 

benchmarking measures and datasets to evaluate and critically examine the performance of 

different MSA software packages, as underscored by a number of recent articles addressing 

the subject [1-5].   

At the same time, and despite these positive developments, the standard approach 

adopted by the great majority of scientists dealing with sequence alignment has remained 

reliance on aligners that have long been outperformed in benchmarks [6], or even manual and 

therefore inevitably subjective intervention in the alignment process [7]. It is unclear whether 

this is due to the simplicity of use and convenience of long-standing aligners (“historical 

inertia” [7]), reluctance to move away from customary practice, or unawareness or even 

distrust of newer, lesser-tested technologies. This trend is particularly worrying in light of the 

rapid spread of high-throughput technologies and the associated need for automation of 

analysis pipelines [8]. A reason for this state of affairs might lie the absence of 

straightforward alignment benchmarking procedure and interpretation. In this chapter, we 

contribute to overcoming this problem by reviewing present alignment benchmarks, aiming 

to clarify their strengths and risks for MSA evaluation with a view towards having better (and 

better-trusted) benchmarks in the future. But before considering benchmarking strategies, we 

first need to review the alignment objectives we expect them to gauge.  

1.1. What should sequence aligners strive for? 

A conceptual complication lies in the fact that MSAs have multiple and potentially 

conflicting goals, depending on the biological question of interest [9]. Commonly, the 

residues aligned are those inferred to be related through homology, i.e. common ancestry. In 

other contexts, however, the emphasis might be more on functional or structural concordance 
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among residues. A strictly evolutionary interpretation of homology in these cases could be 

counter-productive, as recognized also by Kemena and Notredame [1], since regions of the 

protein that carry out the same function or that occupy the same position in the three-

dimensional conformation of the protein may have arisen independently by evolutionary 

convergence. For example, an alignment that pairs structurally analogous, but non-

homologous, residues would be informative and therefore “correct” to the structural biologist, 

although not so to the phylogeneticist. It should however be noted that functional and 

structural objectives are considerably less precise than the evolutionary objective: while 

common ancestry is an absolute, binary attribute, similarity in functional or structural role are 

context-dependent, continuous attributes, thus rendering any reduction to the aligned/ 

unaligned dichotomy subjective at best, ill-defined at worst. 

At the same time, the unambiguous nature of the evolutionary objective does not 

make it automatically easy to pursue (or, as we shall see below, ascertain). Indeed, the 

evolutionary history of biological sequences is mostly unknown and can only be inferred 

from present data under the (explicit or implicit) assumption of a model of sequence 

evolution.  

In practice, most MSA methods muddle the distinction among homology-, structure-, 

or function-motivated alignment by employing strategies anchored in inconsistent objectives. 

Indeed, almost all well-established aligners assume and exploit evolutionary relationships 

among the sequences (e.g. by constructing the alignment using an explicitly phylogenetic 

guide tree and alignment scores derived from models of sequence evolution). Yet many use at 

the same time structural criteria in their parameters or heuristics, for example by training their 

parameters using structure-derived reference alignments [10,11]. The complications of the 

strategies different aligners employ can however be divorced from the measurement of their 

success, and we wish to make no assumption that an aligner employing one strategy 

necessarily performs better when assessed according to criteria consistent with its internal 

methods. In the present context of alignment benchmarking, we therefore treat aligners as 

“black boxes” and refer the reader interested in the specifics of alignment methods to later 

chapters.  
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1.2. Aims and desirable properties of alignment benchmarks 

As mentioned in the introduction, benchmarks provide ways of evaluating the 

performance of different MSA packages on standardised input. The output produced by the 

different programs is compared to the ‘correct’ solution, the so-called gold standard, that is 

defined by the benchmark. The extent of similarity between the two then defines the quality 

of the aligner’s performance. 

Proper benchmarking is advantageous to both the user and the developer community: 

the former obtains standardized measures of performance that can be consulted in order to 

pick the most appropriate MSA tools to address a particular alignment problem, and the latter 

gains important insight into aspects of the software that need improvement, or new features to 

be implemented, thus promoting advancement of the field [2].  

Which characteristics do benchmarks and the gold standard reference dataset need to 

satisfy in order to be useful to the user and developer community? Benchmarks can be 

critically examined by looking at their ability to yield performance measures that reflect the 

actual biological accuracy (whether defined in terms of shared evolutionary history or 

structural or functional similarity of the aligned sequence data) of the MSA method. This can 

most easily be done by defining a set of pre-determined criteria for good benchmarking 

practice. We follow Aniba et al. [2] in their list of desirable properties of benchmarks, which 

states that a benchmark should be: 

• Relevant, in that a benchmark should be reflective of actual MSA applications, 

i.e. tasks carried out by MSA in practice and not in an artificial or hypothetical 

setting; 

• Solvable, in that it provides sufficient challenge to differentiate between poor and 

good performances, while remaining a tractable problem; 

• Scalable, so that it can grow with the development of MSA programs and 

sequencing technologies; 

• Accessible, in order to be widely used by developers and users; 

• Independent from the methods used by programs under test, as benchmark datasets 

should avoid any overlap with the heuristics chosen for construction of MSA in 

order to constitute an objective reference; and 
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• Evolving, to reduce the possibility of developers adapting their programs to a 

particular test set over time, thus artificially inflating their scores. 

Although MSA methods employ different computational solutions to reconstruct 

sequence alignments, their performance needs to be assessed on the same benchmarks in 

order to be objectively evaluated and compared. In this chapter, we consider four broad MSA 

benchmarking strategies (Figure 1):  

(i) benchmarks based on simulated evolution of biological sequences, to create 

examples with known homology;  

(ii) benchmarks based on consistency among several alignment techniques;  

(iii) benchmarks based on the three-dimensional structure of the proteins encoded by 

sequence data; 

(iv) benchmarks based on knowledge of, or assumption about, the phylogeny of the 

aligned biological sequences. 
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Figure 1. Schematic of the four main MSA benchmarking strategies of this review: for 

each approach, the benchmarking process starts from the corresponding downward-pointing 

arrow (▾) and involves alignment by different MSA methods (gray box in centre, illustrating 

example aligners that may be benchmarked). 	
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In the remainder of this chapter, we analyse each of these benchmarking approaches 

to point out their pros and cons, and determine how well they satisfy the criteria defined 

above and summarised in Table 1. 

 

Approach Advantages Risks Examples References 
Simulation-
based 

· Solvability: ‘true’ 
homology is known 
· Evolving: different 
scenarios can be 
modelled 
· Scalability: new data 
can be generated ad 
libitum 
 

· Relevance: 
simulated data 
might strongly 
differ from real 
biological data 
· Independence: 
MSA parameters 
might resemble 
those used in 
simulation  
 

Rose [12] 
DAWG [13] 
EvolveAGene3 [14] 
iSGv2.0 [15] 
INDELible [16] 
PhyloSim [17] 
ALF [18] 
  

Consistency-
based 

· Scalability: not 
constrained to a 
particular reference set 
· Accessibility: tests 
are easy and quick 

· Relevance: 
consistent MSA 
methods may be 
collectively biased 
· Independence: 
similar scores might 
be used in MSA 
inference 
 

MUMSA [19,20] 
HoT [21] 

Structure-
based 

· Relevance: closely 
matches a major 
biological objective of 
MSA 
· Independence: 
empirical data is used 
as input 
 

· Relevance: limited 
to structurally 
conserved regions; 
biological objective 
of MSA may vary 
· Scalability: only 
applicable to small 
subset of protein 
sequences 
 

HOMSTRAD [22,10] 

OXBench [23] 
PREFAB [24] 
SABMARK [25] 
BAliBASE 3.0 [26,11] 
STRIKE [27] 

Phylogeny-
based 

· Relevance: closely 
matches a major 
biological objective of 
MSA 
· Independence: 
empirical data is used 
as input 
· Scalability: broad 
array of sequence data 
can be used as input 

· Relevance: 
biological objective 
of MSA may vary 
from phylogenetic 
reconstruction 

Species-tree 
discordance 
test 

[28] 

Minimum 
duplication test 

[28] 

 

Table 1. The advantages and risks of the four approaches to MSA benchmarking. 

Examples are given of relevant software packages, benchmark databases and tests. 
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2. Simulated sequences 

Given that a major objective of MSA is to identify residues that evolved from a 

common ancestor, i.e., to optimize for homology in the alignment, one approach to 

benchmarking involves generating families of artificial sequences by a process of simulated 

evolution along a known tree. Such simulation-based approaches adopt a probabilistic model 

of sequence evolution to describe nucleotide substitution, deletion, and insertion rates, while 

keeping track of ‘true’ relationships of homology between individual residue positions. Since 

these are known, a ‘true’ reference alignment and a test alignment based on the simulated 

sequence data, assembled by a particular MSA tool of choice, can be compared and measures 

of accuracy estimated (see below). There are many packages that will perform simulated 

sequence evolution, including Rose [12], DAWG [13], EvolveAGene3 [14], INDELible [16], 

PhyloSim [17], REvolver [29] and ALF [18]. 

 To quantify the agreement between the reconstructed alignment and the true 

alignment (known from the simulation), two measures of accuracy are commonly employed: 

the sum-of-pairs (SP) and the true column (TC) scores [30]. The former is defined as the 

fraction of aligned residue pairs that are identical between the reconstructed and true 

alignment, averaged over all pairwise comparisons between individual sequences; the latter is 

defined as the fraction of correctly aligned columns that are reproduced in the reconstructed 

alignment. Given that the TC score considers whole columns in the alignment as comparable 

units, a single misaligned sequence can reduce the TC score to zero. For this reason, when 

considering numerous or divergent sequences, the finer-grained SP score is usually used. Yet 

even the SP score is not without problems. For instance, pairwise comparisons ignore 

correlations among sequences, meaning that closely related sequences contribute 

disproportionately more to the SP score than they do to the total phylogenetic information 

contained in the alignment; this can be misleading in phylogenetic applications. More 

generally, SP and TC are not proper metrics (they do not satisfy the conditions of symmetry 

or triangle inequality), which has motivated the recent development of better-founded 

alternatives [31].  

Besides the advantage of knowing the true alignment, the fact that the parameters for 

simulated sequence evolution are user-defined directly translates into great flexibility to 
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address specific questions or to investigate the effect of individual factors in isolation of 

others, which is particularly useful to gain insights into the behaviour of complex alignment 

pipelines. For instance, Löytynoja and Goldman used simulated sequences to expose the 

systematic underrepresentation of the number of insertions by many aligners, which is 

especially true as sequence divergence and the number of sequences increases [32]. 

At the same time, the high level of flexibility afforded by simulation ties in with its 

biggest drawback: all observations drawn from simulated data depend on the assumptions and 

simplifications of the model used to generate these data. The vague notion of “realistic 

simulation” is often used to justify reliance on simulations capturing relevant aspects of real 

data, but simulations cannot straightforwardly, if at all, account for all evolutionary forces. 

The risk thus becomes the benchmarking of MSA programs in scenarios of little or no 

relevance to real biological data. For instance, Golubchik et al. investigated the performance 

of six aligners by simulating sequences in which gaps of constant size were placed in a 

staggered arrangement across all sequences [33]; although this scenario might be useful to 

emphasize a more general problem in aligning regions adjacent to gaps, its very artificial 

nature makes it a poor choice to gauge the extent of that problem on real data. 

A further potential risk is the use of simulation settings more favourable to some packages 

than others [34]. For instance, the selected model of sequence evolution might resemble the 

underlying model of a particular aligner and thus provide it with an “unfair” advantage 

(i.e. presumably unrepresentative of typical situations) in the evaluation. Even when the 

evaluation is conducted in good faith, the high complexity of many MSA aligners—

particularly in terms of implicit assumptions and heuristics—can make it challenging to 

design a fair simulation. 

3. Consistency among different alignment methods 

The key idea behind consistency-based benchmarks is that different good aligners 

should tend to agree on a common alignment (namely the correct one) whereas poor aligners 

might make different kinds of mistakes, thus resulting in inconsistent alignments. 

Confusingly, this notion of consistency among aligners is different from that of consistency-

based aligning, which is an alignment strategy that favours MSAs consistent with pairwise 

alignments [35,36]. In the context of benchmarking, the relevant notion is the former—



	
   10	
  

referred to by Lassmann and Sonnhammer as “inter-consistency”, cf. “intra-consistency” for 

the latter [19]. 

Practically, benchmarking by consistency among aligners can be implemented using 

measures such as the overlap score [19], a symmetric variant of sum-of-pairs. From a set of 

input alignments, all paired aligned residues are determined over all sequences in every 

alignment. The overlap score for two alignments is calculated by counting the aligned pairs 

present in both alignments, and dividing by the average number of pairs in the alignments. 

Hence, two almost identical alignments have an overlap score close to one, while two very 

different alignments have an overlap score close to zero. Two additional scores based on this 

concept are the average overlap score, and the multiple overlap score. The average overlap 

score is simply the mean of the overlap scores measured over all pairs of input alignments, 

and represents the difficulty of the alignment problem. The multiple overlap score is a 

weighted sum of all pairs present in a single alignment, with the weight determined by the 

number of times each pair appears in the whole set of alignments. It is assumed that a high 

multiple overlap score, gained by an alignment with a high proportion of commonly observed 

pairs, corresponds to a good performance.  

Another score that allows an internal control measure to estimate the consistency of 

different aligners is the heads-or-tails (HoT) score [21]. This consistency test is based on the 

assumption that biological sequences do not have a particular direction, and thus that 

alignments should be unaffected whether the input sequences are given in the original or 

reversed order. The agreement between the alignments obtained from the original and 

reversed sequences can be quantified with the overlap measures outlined above.  

Both these consistency approaches—consistency among aligners and HoT score—are 

attractive because they assume no reference alignment or model of sequence of evolution, 

and thus can be readily and easily employed. Furthermore, high consistency is a necessary 

quality of a set of accurate aligners, thus making it desirable. The consistency criterion also 

appeals to the intuitive idea of “independent validation”—although most aligners have many 

aspects in common and are thus hardly “independent”. 

The biggest weakness of consistency is that it is no guarantee of correctness: methods 

can be consistently wrong. More subtly, consistency is sensitive to the choice of aligners in 

the set. This can be partly mitigated by including as many different alignments as possible 
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[19]; nevertheless, it is easy to imagine cases where an accurate alignment, outnumbered by 

inaccurate, but similar, alignments, will be rated poorly. For instance, a new method solving a 

problem endemic to existing aligners will have low consistency scores. 

Likewise, while low HoT scores can be indicative of considerable alignment 

uncertainty, the converse is not necessarily true. Hall reported that on simulated data at least, 

HoT scores tend to overestimate alignment accuracy [37]. That being said, considering the 

simplicity of HoT’s scheme, the correlation he found between HoT and simulation-based 

measures of alignment accuracy is strikingly high (depending on methods, Pearson ρ of 87–

98%). It remains to be seen whether this will remain the case over time—new aligners might 

be tempted to exploit HoT’s idea in their inference algorithms or parameter optimisation 

procedures, thus compromising its independence as a benchmarking criterion. For instance, a 

trivial way of “gaming” the HoT score is to align sequences with “centre-justification” 

(adding a gap character in the middle of sequences of even-numbered length). Such obviously 

flawed alignment procedure is nevertheless insensitive to joint sequence reversals, 

consistently obtaining a perfect HoT score. 

4. Structural Benchmarks  

Benchmarks have also been developed starting from protein structure data. Structural 

benchmarks are by far the most widely adopted type [2]. Most commonly these employ the 

superposition of known protein structures as an independent means of alignment, to which 

alignments derived from sequence analysis can then be compared using the sum-of-pairs and 

true-column metrics discussed earlier.  

Structural benchmarks are naturally highly relevant when sequence alignments are 

sought to identify structural concordance among amino-acid residues. Yet they are also 

relevant to an evolutionary interpretation of alignments. Indeed, the biological observation 

that forms the basis of using structure in the latter context is that homologous proteins often 

retain structural similarity even when sequence divergence is large [38, Flores, 1993]. Thus, 

at high levels of divergence, a greater degree of confidence may be placed on alignments 

based on structural conservation than on sequence similarity. If residues from different 

proteins can be shown to overlap in three-dimensional space, it is likely (though not certain) 

that they are homologous. An important advantage of structural benchmarks is that they 
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provide a truly independent, empirically-derived standard to test different alignment 

algorithms. 

A number of structurally-derived benchmark datasets exist. One of the oldest is 

HOMSTRAD [22,10]. Although not originally intended for benchmarking, this dataset has 

been extensively used to rate the quality of alignments. The first purpose-built, large-scale 

structural benchmark was BAliBASE [26,11], which was based on similarity of known 

protein structures. It is divided into a number of datasets, each suited to test a different 

alignment problem—for example, greater or lesser sequence diversity, the presence of large 

insertions or extensions or the presence of repeated elements. Each BAliBASE dataset was 

constructed by accessing information in structural databases, and alignments were verified by 

hand, at both the level of individual residues and of overall secondary structure. Other 

purpose-built structural benchmarks include SABMARK [25] and PREFAB [24], which 

differ from BAliBASE in that they are derived by automatic means, rather than by manual 

annotation of protein alignments. Reference sets also exist for RNA structures [39]. For 

further discussion of these datasets, we direct the reader to reviews by Aniba et al. [2], Edgar 

[3], Kim and Sinha [40], and Thompson et al. [4].  

Regarding the desirable criterion of independence, although alignment algorithms 

incorporating structural aspects of sequence data do exist, such as Dynalign [41] and 

Foldalign [42]—for a more exhaustive discussion of RNA structural alignments, see Gardner 

et al. [39]—the parameters that go into constructing structure-based reference datasets are 

usually completely detached from the considerations that go into the development of MSA 

workflows. 

Despite the degree of confidence structural alignment confers, it has been observed 

that sequence alignments used in BAliBASE and PREFAB are not always consistent with 

known annotations from external sources such as the CATH and SCOP databases, thus 

calling into question their biological accuracy [3]. Both manual and automated structural 

benchmark construction face considerable challenges. Manually-curated structural 

benchmarks, while usually believed to generate more biologically accurate results than 

automated procedures, might also introduce subjective bias in the alignment. Automated 

procedures ensure reproducibility, but cannot avoid the existence of debatable parameter 

choices (e.g. the choice of the minimum spatial distance for two residues to be considered in 

the same fold) and potential systematic errors.  
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The non-trivial relationship between structural similarity of residues and alignment 

highlighted by this study, however, is not the only cause of concern in structural benchmarks. 

Specifically, structure superpositions used for creating structural benchmarks are often not 

only based on experimentally derived structures, but also on primary sequence-based 

procedures such as BLASTP [43] and NORMD [44] which themselves employ amino acid 

substitution matrices and gap penalty scores, and thus make modelling assumptions about the 

sequences to be aligned [3]. If these parameters overlap with the parameters employed in 

MSA methods under test, then reference alignments obtained this way will be biased towards 

MSA-derived alignments that used those same parameters. 

Problems arising from the use in benchmarking of reference alignments derived from 

structural comparisons can partially be overcome by the direct use of structural measures that 

are independent of any reference alignment. To evaluate the structure superposition implied 

by an MSA, Raghava et al. [23] adopted scores from a sequence-based multiple structure 

alignment algorithm [45]. Such structure similarity scores approximate the location of an 

amino acid in a test alignment by the location of its α-carbon (backbone carbon to which the 

amino acid side-chain attaches). Two aligned amino acid are then compared by the distance 

between their chains of α-carbon atoms, estimated by least squares over translations and 

rotations of their respective 3D protein structures (which are known a priori). A simple score 

is given by the root-mean-square deviations between superposed α-carbon atoms, whereas a 

more refined score also takes into account the orientation of these atoms [48]. 

Two final aspects of structural benchmarks further complicate their application in 

MSA assessment. The fact that reliable annotations exist only for structurally-conserved 

sequences means that MSA of any region of the genome other than structured protein coding 

regions—be it intronic, regulatory, natively disordered, or simply poorly annotated—cannot 

be effectively assessed using existing structural benchmarks [4,40]. This is particularly 

important given that only a very small fraction of genome sequences encode globular, folded 

protein domains, and that both structural benchmarks and MSA tools focus mainly on 

alignment of this very small portion of sequences. The current state of sequencing 

technologies also means that sequence data come with many artifacts due to sequencing 

errors, short read length, and/or poor gene prediction models [4,8,46,47] which are only very 

recently starting to be accounted for in benchmarks [4].  
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Considering all these complications, it becomes apparent that the map between 

structure and alignment is neither straightforward nor unequivocal. And indeed, by 

annotating known domains in reference datasets (or estimating superfamilies when the 

domain was unavailable), and then comparing annotation agreement in the reference 

alignments by use of column scores, Edgar found inconsistencies in the assignment of aligned 

residues to specific secondary structure in both PREFAB and BAliBASE [3].  

5. Phylogenetic tests of alignment 

Our last type of benchmark is phylogenetic tests of alignment. Dessimoz and Gil [28] 

have recently introduced such tests, developing an MSA assessment pipeline that explicitly 

takes into consideration phylogenetic relationships within the input sequence data to evaluate 

the validity of alignment hypotheses generated by different MSA methods. 

This approach to benchmarking involves deriving alignments of the test data from 

different MSA packages as the starting point for tree building. The principle of the tests is 

simple: the more accurate the resulting tree, the more accurate the underlying alignment is 

assumed to be. The quality of the tree is measured by its compliance with an auxiliary 

principle or model; auxiliary in the sense that the additional knowledge introduced be 

independent of sequence data. So far, two methods have been devised. In the first, referred to 

as the “species tree discordance test”, test alignments are built only from putative orthologous 

sequences, so that the resulting test trees can be expected to have the same topology as the 

underlying species tree. Each resulting tree is then compared to a reference species tree, 

comprising sufficiently divergent species that its branching order is deemed uncontroversial. 

The best performing aligners are taken to be those that most consistently generate alignments 

that yield test trees congruent with the species tree. Indeed, it can be expected that averaged 

over many hundreds or thousands of families, discordance due to non-orthology among the 

input sequences will affect the performance of all aligners equally, whereas discordance due 

to alignment error will vary among aligners.  

The second method, termed the “minimum duplication test”, invokes a parsimony 

argument to interpret test trees built from alignments of both orthologous and paralogous 

sequences, favouring trees which require fewer gene duplications to explain the data as more 

likely to reflect the true evolutionary history of the sequences. 
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One key advantage of phylogenetic benchmarks is that they provide a way of 

evaluating gap-rich and variable regions, regions for which structural benchmarks are often 

not applicable and simulation benchmarks lack realism [28]. In particular, the limited 

applicability of structural benchmarks to conserved protein core regions has quite possibly 

caused developers of alignment methods to focus their efforts on improving the performance 

of their tools on conserved regions at the expense of gap-rich or variable regions. Yet 

focusing on conserved regions can result in a loss of potentially informative data for multiple 

sequence alignment [32]. Adopting a simple tree inference method that looks only at presence 

or absence of gaps as a binary character within a maximum parsimony framework, Dessimoz 

and Gil reported that gap-only trees are sometimes even more accurate than nucleotide-based 

trees, thus highlighting the signal lost in neglecting variable or gap-rich regions [28]. 

At present, phylogeny-based benchmarks are the only ones that can be interpreted to 

be directly evaluating homology on real data. The premise of this interpretation is that more 

accurate trees on average necessarily ensue from a higher proportion of homologous positions 

in alignments on average, and therefore that the former is a good surrogate for the latter. Yet 

although we view the premise as highly plausible (and indeed fail to see how one could argue 

the opposite), there is no proof for it. If dismissed altogether, the interpretation has to be 

weakened so that these phylogeny tests only measure the effect of alignment on phylogenetic 

inference. In this case, phylogeny-based benchmarks are less meaningful even for other 

homology-based applications of alignments, such as detecting sites under positive selection 

[48]. 

6. Conclusions 

Benchmarks for MSA applications have arisen in recent years as a crucial tool for 

bioinformaticians to keep a critical eye on existing software packages and reliably diagnose 

areas that need further development. The implementation of benchmarks to routinely assess 

the efficacy and accuracy of MSA methods has clearly provided important insights, and has 

pointed out to the developer community very serious shortcomings of existing methods that 

would not otherwise have been so apparent [28,4,49,19]. Each benchmarking solution 

examined in this chapter—whether simulation-, consistency-, structure-, or phylogeny-

based—entails risks of bias and error, but each is also useful in its own right when applied to 

a relevant problem. It is interesting to note that simulation benchmarks rank MSA methods 

differently from empirical benchmarks [49,50,32]. It is clear that no single benchmark can be 



	
   16	
  

uniformly used to test different MSA methods. Instead, due to both the computational and 

biological issues raised by the problem of sequence alignment optimization, a multiplicity of 

scenarios need to be modelled in benchmark datasets. 

A telling symptom of the current state of affairs is the fact that subjective manual 

editing of sequence alignments remains widespread, reflecting perhaps an overall lack of 

confidence in the performance of automated multiple alignment strategies. The criteria used 

when editing sequence alignments ‘by eye’ are vague and may introduce individual biases 

and aesthetic considerations into sequence alignment [32,9]. 

In order to ensure reproducibility of experimental results, one of the most important 

goals of scientific practice, this trend needs to change. Context-dependent, effective 

benchmarking with well-defined objectives represents a sensible way forward. 
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