119 research outputs found

    Little evidence for morphological change in a resilient endemic species following the introduction of a novel predator

    Get PDF
    Human activities, such as species introductions, are dramatically and rapidly altering natural ecological processes and often result in novel selection regimes. To date, we still have a limited understanding of the extent to which such anthropogenic selection may be driving contemporary phenotypic change in natural populations. Here, we test whether the introduction of the piscivorous Nile perch, Lates niloticus, into East Africa's Lake Victoria and nearby lakes coincided with morphological change in one resilient native prey species, the cyprinid fish Rastrineobola argentea. Drawing on prior ecomorphological research, we predicted that this novel predator would select for increased allocation to the caudal region in R. argentea to enhance burst-swimming performance and hence escape ability. To test this prediction, we compared body morphology of R. argentea across space (nine Ugandan lakes differing in Nile perch invasion history) and through time (before and after establishment of Nile perch in Lake Victoria). Spatial comparisons of contemporary populations only partially supported our predictions, with R. argentea from some invaded lakes having larger caudal regions and smaller heads compared to R. argentea from uninvaded lakes. There was no clear evidence of predator-associated change in body shape over time in Lake Victoria. We conclude that R. argentea have not responded to the presence of Nile perch with consistent morphological changes and that other factors are driving observed patterns of body shape variation in R. argentea

    Habitat-Specific Morphological Variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a Drainage Basin

    Get PDF
    Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species

    A Novel Resource Polymorphism in Fish, Driven by Differential Bottom Environments: An Example from an Ancient Lake in Japan

    Get PDF
    Divergent natural selection rooted in differential resource use can generate and maintain intraspecific eco-morphological divergence (i.e., resource polymorphism), ultimately leading to population splitting and speciation. Differing bottom environments create lake habitats with different benthos communities, which may cause selection in benthivorous fishes. Here, we document the nature of eco-morphological and genetic divergence among local populations of the Japanese gudgeon Sarcocheilichthys (Cyprinidae), which inhabits contrasting habitats in the littoral zones (rocky vs. pebbly habitats) in Lake Biwa, a representative ancient lake in East Asia. Eco-morphological analyses revealed that Sarcocheilichthys variegatus microoculus from rocky and pebbly zones differed in morphology and diet, and that populations from rocky environments had longer heads and deeper bodies, which are expected to be advantageous for capturing cryptic and/or attached prey in structurally complex, rocky habitats. Sarcocheilichthys biwaensis, a rock-dwelling specialist, exhibited similar morphologies to the sympatric congener, S. v. microoculus, except for body/fin coloration. Genetic analyses based on mitochondrial and nuclear microsatellite DNA data revealed no clear genetic differentiation among local populations within/between the gudgeon species. Although the morphogenetic factors that contribute to morphological divergence remain unclear, our results suggest that the gudgeon populations in Lake Biwa show a state of resource polymorphism associated with differences in the bottom environment. This is a novel example of resource polymorphism in fish within an Asian ancient lake, emphasizing the importance and generality of feeding adaptation as an evolutionary mechanism that generates morphological diversification

    Contemporary Evolutionary Divergence for a Protected Species following Assisted Colonization

    Get PDF
    Contemporary evolution following assisted colonization may increase the probability of persistence for refuge populations established as a bet-hedge for protected species. Such refuge populations are considered "genetic replicates" that might be used for future re-colonization in the event of a catastrophe in the native site. Although maladaptive evolutionary divergence of captive populations is well recognized, evolutionary divergence of wild refuge populations may also occur on contemporary time scales. Thus, refuge populations may lose their "value" as true genetic replicates of the native population. Here, we show contemporary evolutionary divergence in body shape in an approximately 30-year old refuge population of the protected White Sands pupfish (Cyprinodon tularosa) resulting in a body-shape mismatch with its native environment.Geometric morphometic data were collected from C. tularosa cultures raised in experimental mesocosms. Cultures were initiated with fish from the two native populations, plus hybrids, in high or low salinity treatments representing the salinities of the two native habitats. We found that body shape was heritable and that shape variation due to phenotypic plasticity was small compared to shape variation due to population source. C. tularosa from the high salinity population retained slender body shapes and fish from the low salinity population retained deep body shapes, irrespective of mesocosm salinity. These data suggest that the observed divergence of a recently established pupfish population was not explained by plasticity. An analysis of microsatellite variation indicated that no significant genetic drift occurred in the refuge population, further supporting the adaptive nature of changes in body shape. These lines of evidence suggest that body shape divergence of the refuge population reflects a case of contemporary evolution (over a 30-year period).These results suggest assisted colonization can introduce novel, and/or relaxed selection, and lead to unintended evolutionary divergence

    Little evidence for a selective advantage of armour-reduced threespined stickleback individuals in an invertebrate predation experiment

    Get PDF
    The repeated colonization of freshwater habitats by the ancestrally marine threespined stickleback Gasterosteus aculeatus has been associated with many instances of parallel reduction in armour traits, most notably number of lateral plates. The change in predation regime from marine systems, dominated by gape-limited predators such as piscivorous fishes, to freshwater habitats where grappling invertebrate predators such as insect larvae can dominate the predation regime, has been hypothesized as a driving force. Here we experimentally test the hypothesis that stickleback with reduced armour possess a selective advantage in the face of predation by invertebrates, using a natural population of stickleback that is highly polymorphic for armour traits and a common invertebrate predator from the same location. Our results provide no compelling evidence for selection in this particular predator–prey interaction. We suggest that the postulated selective advantage of low armour in the face of invertebrate predation may not be universal

    Sexual Display and Mate Choice in an Energetically Costly Environment

    Get PDF
    Sexual displays and mate choice often take place under the same set of environmental conditions and, as a consequence, may be exposed to the same set of environmental constraints. Surprisingly, however, very few studies consider the effects of environmental costs on sexual displays and mate choice simultaneously. We conducted an experiment, manipulating water flow in large flume tanks, to examine how an energetically costly environment might affect the sexual display and mate choice behavior of male and female guppies, Poecilia reticulata. We found that male guppies performed fewer sexual displays and became less choosy, with respect to female size, in the presence of a water current compared to those tested in still water. In contrast to males, female responsive to male displays did not differ between the water current treatments and females exhibited no mate preferences with respect to male size or coloration in either treatment. The results of our study underscore the importance of considering the simultaneous effects of environmental costs on the sexual behaviors of both sexes

    Does personality affect premating isolation between locally-adapted populations?

    Get PDF
    Background: One aspect of premating isolation between diverging, locally-adapted population pairs is female mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction of the mate choice component of premating isolation in this system. Results: We characterized focal females for their personality and found behavioral measures of ‘novel object exploration’, ‘boldness’ and ‘activity in an unknown area’ to be highly repeatable. Furthermore, the interaction term between our measures of exploration and boldness affected focal females’ strength of preference (SOP) for the resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/or little explorative females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative females showed stronger preferences for large male body size. However, this effect disappeared when the size difference between the stimulus males was small. Conclusions: Our results suggest that personality affects female mate choice in a very nuanced fashion. Hence, population differences in the distribution of personality types could be facilitating or impeding reproductive isolation between diverging populations depending on the study system and the male trait(s) upon which females base their mating decisions, respectively

    Behavioural responses of Anopheles gambiae sensu stricto M and S molecular form larvae to an aquatic predator in Burkina Faso

    Get PDF
    Background: Predation of aquatic immature stages has been identified as a major evolutionary force driving habitat segregation and niche partitioning in the malaria mosquito Anopheles gambiae sensu stricto in the humid savannahs of Burkina Faso, West Africa. Here, we explored behavioural responses to the presence of a predator in wild populations of the M and S molecular forms of An. gambiae that typically breed in permanent (e.g., rice field paddies) and temporary (e.g., road ruts) water collections. Methods: Larvae used in these experiments were obtained from eggs laid by wild female An. gambiae collected from two localities in south-western Burkina Faso during the 2008 rainy season. Single larvae were observed in an experimental arena, and behavioural traits were recorded and quantified a) in the absence of a predator and b) in the presence of a widespread mosquito predator, the backswimmer Anisops jaczewskii. Differences in the proportion of time allocated to each behaviour were assessed using Principal Component Analysis and Multivariate Analysis of Variance. Results: The behaviour of M and S form larvae was found to differ significantly; although both forms mainly foraged at the water surface, spending 60-90% of their time filtering water at the surface or along the wall of the container, M form larvae spent on average significantly more time browsing at the bottom of the container than S form larvae (4.5 vs. 1.3% of their overall time, respectively; P < 0.05). In the presence of a predator, larvae of both forms modified their behaviour, spending significantly more time resting along the container wall (P < 0.001). This change in behaviour was at least twice as great in the M form (from 38.6 to 66.6% of the time at the wall in the absence and presence of the predator, respectively) than in the S form (from 48.3 to 64.1%). Thrashing at the water surface exposed larvae to a significantly greater risk of predation by the notonectid (P < 0.01), whereas predation occurred significantly less often when larvae were at the container wall (P < 0.05) and might reflect predator vigilance. Conclusions: Behavioural differences between larvae of the M and S form of An. gambiae in response to an acute predation risk is likely to be a reflection of different trade-offs between foraging and predator vigilance that might be of adaptive value in contrasting aquatic ecosystems. Future studies should explore the relevance of these findings under the wide range of natural settings where both forms co-exist in Africa

    Both Geography and Ecology Contribute to Mating Isolation in Guppies

    Get PDF
    Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature
    corecore