178 research outputs found

    Integrating Resource Defence Theory with a Neural Nonapeptide Pathway to Explain Territory-Based Mating Systems

    Get PDF
    1 Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX 77341 USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106 USA. 2 Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA. 3 Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA. 4 Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA.The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom.This work was supported by an Engineering Plus NSF-ADVANCE Opportunity grant to R.G. O., and NSF Grants IOS-0843712 and IOS-1354942, an Alfred P. Sloan Foundation Fellowship, the Dwight W. and Blanche Faye Reeder Centennial Fellowship in Systematic and Evolutionary Biology, and an Institute for Cellular and Molecular Biology Fellowship to H.A.H.Integrative Biolog

    The locus for an inherited cataract in sheep maps to ovine chromosome 6

    Get PDF
    Purpose: Cataracts are an important cause of blindness in humans but there are few large animal models available. One of these animal models is Ovine Heritable Cataract, a bilateral cortical cataract which develops after birth. This cataract has been used as a model for human cataracts in drug trials, but the gene responsible for the cataract trait is unknown. A genetic test for cataract would improve the efficiency of the model by predicting which animals would develop cataracts. Identifying the genetic basis of the cataract would indicate its relevance to human cataract. Methods: A genome scan was performed on 20 sheep chromosomes, representing 86% of the genome, to determine the position of the cataract locus. Additional microsatellite markers were tested on chromosome 6 using a larger pedigree. Fine mapping was performed using a breakpoint panel of 36 animals and novel microsatellite markers taken from the bovine genome assembly. All exons of the candidate gene nudix (nucleoside diphosphate linked moiety X)-type motif 9 (NUDT9) were sequenced in normal and affected sheep. Results: Significant linkage was found between cataract status and markers on chromosome 6. Linkage analysis on the larger pedigree showed the most likely position of the cataract locus was between 112.3 and 132.9 cM from the centromere. During fine mapping, NUDT9 was considered as a positional candidate for the cataract gene because it was located within the linked interval and is expressed in the lens. The gene was ruled out as the cataract gene after extensive genotype analysis, but a single nucleotide polymorphism (SNP) inside it provided a useful restriction fragment length polymorphism (RFLP) marker for further fine mapping. Twelve new markers were found and used to map the cataract locus to between 131.1 and 131.8 cM from the centromere. Conclusions: A region of ovine chromosome 6 strongly linked to cataract has been identified, and a genetic test for cataract based on a SNP within this region has been developed. The best candidate gene within this region is AF4/FMR2 family, member 1 (AFF1), the mouse equivalent of which is associated with an inherited cataract.This research was supported by the New Zealand Foundation for Research, Science, and Technology, grant number LINX0205

    Prosumer and Product Design Through Digital Tools

    Get PDF
    Currently, the growing interest of users and consumers in the participation of the creative process has led to the typical “maker culture” practices. Consequently, there is an increasing number of prosumers - users who produce what they consume - who want to be part of the design and transformation process of the products. In order to achieve it, prosumers have begun to use digital tools that greatly facilitate this task. These tools could vary depending on the number of users involved in the process and the freedom of participation that they have on the product. It has been presented a number of qualitative classification of cases involving the end user, individually or collectively, that has influenced as a prosumer in the product design process. The objective is to study the use of digital tools in the creative phase within the design process according to their different levels of participation with respect to the final product. The cases are shown in four tables according to the number of users involved in the process and their level of participation. In these tables, other important aspects related to the study of digital tools such as the type of contribution of the prosumer to the product or the design phase in which he participates will be identified. In conclusion, this work will show if there is a pattern in the use of digital tools according to the number of users involved in the process and the freedom of participation that they have and which are the reasons for their use

    White matter microstructure in 22q11 deletion syndrome: a pilot diffusion tensor imaging and voxel-based morphometry study of children and adolescents

    Get PDF
    Young people with 22q11 Deletion Syndrome (22q11DS) are at substantial risk for developing psychosis and have significant differences in white matter (WM) volume. However, there are few in vivo studies of both WM microstructural integrity (as measured using Diffusion Tensor (DT)-MRI) and WM volume in the same individual. We used DT-MRI and structural MRI (sMRI) with voxel based morphometry (VBM) to compare, respectively, the fractional anisotropy (FA) and WM volume of 11 children and adolescents with 22q11DS and 12 controls. Also, within 22q11DS we related differences in WM to severity of schizotypy, and polymorphism of the catechol-O-methyltransferase (COMT) gene. People with 22q11DS had significantly lower FA in inter-hemispheric and brainstem and frontal, parietal and temporal lobe regions after covarying for IQ. Significant WM volumetric increases were found in the internal capsule, anterior brainstem and frontal and occipital lobes. There was a significant negative correlation between increased schizotypy scores and reduced WM FA in the right posterior limb of internal capsule and the right body and left splenium of corpus callosum. Finally, the Val allele of COMT was associated with a significant reduction in both FA and volume of WM in the frontal lobes, cingulum and corpus callosum. Young people with 22q11DS have significant differences in both WM microstructure and volume. Also, there is preliminary evidence that within 22q11DS, some regional differences in FA are associated with allelic variation in COMT and may perhaps also be associated with schizotypy

    Speciation with gene flow in a narrow endemic West Virginia cave salamander (\u3ci\u3eGyrinophilus subterraneus\u3c/i\u3e)

    Get PDF
    Due to their limited geographic distributions and specialized ecologies, cave species are often highly endemic and can be especially vulnerable to habitat degradation within and surrounding the cave systems they inhabit. We investigated the evolutionary history of the West Virginia Spring Salamander (Gyrinophilus subterraneus), estimated the population trend from historic and current survey data, and assessed the current potential for water quality threats to the cave habitat. Our genomic data (mtDNA sequence and ddRADseq-derived SNPs) reveal two, distinct evolutionary lineages within General Davis Cave corresponding to G. subterraneus and its widely distributed sister species, Gyrinophilus porphyriticus, that are also differentiable based on morphological traits. Genomic models of evolutionary history strongly support asymmetric and continuous gene flow between the two lineages, and hybrid classification analyses identify only parental and first generation cross (F1) progeny. Collectively, these results point to a rare case of sympatric speciation occurring within the cave, leading to strong support for continuing to recognize G. subterraneus as a distinct and unique species. Due to its specialized habitat requirements, the complete distribution of G. subterraneus is unresolved, but using survey data in its type locality (and currently the only known occupied site), we find that the population within General Davis Cave has possibly declined over the last 45 years. Finally, our measures of cave and surface stream water quality did not reveal evidence of water quality impairment and provide important baselines for future monitoring. In addition, our unexpected finding of a hybrid zone and partial reproductive isolation between G. subterraneus and G. porphyriticus warrants further attention to better understand the evolutionary and conservation implications of occasional hybridization between the species

    Creating and maintaining play connection in a toddler peer group

    Get PDF
    This study explores how one and two year old peers (henceforth toddlers) participate in joint play activities in a natural group-care setting. We focus on joint play activity between three toddler peers during one full day-care day in a Finnish toddler classroom. Questions guiding the analysis concern the sequential understanding of how play emerges within peer interaction and how toddler peers are able to build sustained co-participation in their joint play during the day. The analysis showed that joint play was fragmented and organized in short segments of dyadic or triadic interaction. Re-establishments of joint play and accumulation of significant play signals during the day were important practices for toddlers to constitute social organization and sustained co-participation in their multi-party peer play. The results strengthen our understanding of very young children as both more and less competent play companions in their peer groups and guide adults’ practice in relation to peer play in toddler classrooms.Peer reviewe

    Da aplicação à implicação na antropologia médica: leituras políticas, históricas e narrativas do mundo do adoecimento e da saúde

    Full text link
    Revisa parte da literatura da antropologia médica contemporânea, guiando-se pela orientação/implicação política na escolha de seus objetos de estudo, na análise e na construção de soluções para os problemas investigados. A partir de narrativas de antropólogos, evidenciam-se as bases históricas e sociopolíticas que caracterizaram o campo em seus países de origem ou de migração. No panorama traçado das três principais vertentes contemporâneas – as antropologias médica crítica, do sofrimento e do biopoder –, são caracterizadas escolhas teóricas e temáticas para atender à demanda de “politização” do debate antropológico na saúde, defendendo-se uma antropologia médica “implicada”

    Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish

    Get PDF
    Background: Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. Results: We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli. Conclusions: Our results show that different olfactory stimuli from conspecifics' have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment.Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) [EXCL/BIA-ANM/0549/2012, Pest-OE/MAR/UI0331/2011]; Dwight W. and Blanche Faye Reeder Centennial Fellowship in Systematic and Evolutionary Biology; Institute for Cellular and Molecular Biology Fellowship; FCTinfo:eu-repo/semantics/publishedVersio
    corecore