541 research outputs found

    Suicide ideation of individuals in online social networks

    Full text link
    Suicide explains the largest number of death tolls among Japanese adolescents in their twenties and thirties. Suicide is also a major cause of death for adolescents in many other countries. Although social isolation has been implicated to influence the tendency to suicidal behavior, the impact of social isolation on suicide in the context of explicit social networks of individuals is scarcely explored. To address this question, we examined a large data set obtained from a social networking service dominant in Japan. The social network is composed of a set of friendship ties between pairs of users created by mutual endorsement. We carried out the logistic regression to identify users' characteristics, both related and unrelated to social networks, which contribute to suicide ideation. We defined suicide ideation of a user as the membership to at least one active user-defined community related to suicide. We found that the number of communities to which a user belongs to, the intransitivity (i.e., paucity of triangles including the user), and the fraction of suicidal neighbors in the social network, contributed the most to suicide ideation in this order. Other characteristics including the age and gender contributed little to suicide ideation. We also found qualitatively the same results for depressive symptoms.Comment: 4 figures, 9 table

    Echinoderms have bilateral tendencies

    Get PDF
    Echinoderms take many forms of symmetry. Pentameral symmetry is the major form and the other forms are derived from it. However, the ancestors of echinoderms, which originated from Cambrian period, were believed to be bilaterians. Echinoderm larvae are bilateral during their early development. During embryonic development of starfish and sea urchins, the position and the developmental sequence of each arm are fixed, implying an auxological anterior/posterior axis. Starfish also possess the Hox gene cluster, which controls symmetrical development. Overall, echinoderms are thought to have a bilateral developmental mechanism and process. In this article, we focused on adult starfish behaviors to corroborate its bilateral tendency. We weighed their central disk and each arm to measure the position of the center of gravity. We then studied their turning-over behavior, crawling behavior and fleeing behavior statistically to obtain the center of frequency of each behavior. By joining the center of gravity and each center of frequency, we obtained three behavioral symmetric planes. These behavioral bilateral tendencies might be related to the A/P axis during the embryonic development of the starfish. It is very likely that the adult starfish is, to some extent, bilaterian because it displays some bilateral propensity and has a definite behavioral symmetric plane. The remainder of bilateral symmetry may have benefited echinoderms during their evolution from the Cambrian period to the present

    Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles

    Get PDF
    Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes

    High-Throughput Isolation and Mapping of C. elegans Mutants Susceptible to Pathogen Infection

    Get PDF
    We present a novel strategy that uses high-throughput methods of isolating and mapping C. elegans mutants susceptible to pathogen infection. We show that C. elegans mutants that exhibit an enhanced pathogen accumulation (epa) phenotype can be rapidly identified and isolated using a sorting system that allows automation of the analysis, sorting, and dispensing of C. elegans by measuring fluorescent bacteria inside the animals. Furthermore, we validate the use of Amplifluor® as a new single nucleotide polymorphism (SNP) mapping technique in C. elegans. We show that a set of 9 SNPs allows the linkage of C. elegans mutants to a 5–8 megabase sub-chromosomal region

    Assessing the presence of shared genetic architecture between Alzheimer's disease and major depressive disorder using genome-wide association data

    Get PDF
    We are grateful to the families and individuals who took part in the GS:SFHS and UKB studies, and to all those involved in participant recruitment, data collection, sample processing and QC, including academic researchers, clinical staff, laboratory technicians, clerical workers, IT staff, statisticians and research managers. This work is supported by the Wellcome Trust through a Strategic Award, reference 104036/Z/ 14/Z. We acknowledge with gratitude the financial support received from the Dr Mortimer and Theresa Sackler Foundation. This research has been conducted using the GS:SFHS and UK Biobank (project #4844) resources. GS:SFHS received core funding from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. UKB was established using funding from the Wellcome Trust, Medical Research Council, the Scottish Government Department of Health, and the Northwest Regional Development Agency. DJP, IJD, TCR and AMM are members of the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). TCR is supported by Alzheimer's Scotland, through the Marjorie MacBeath bequest. Funding from the Biotechnology and Biological Sciences Research Council and Medical Research Council is gratefully acknowledged. We are grateful for the use of summary data from the International Genomics of Alzheimer's Project and the Major Depressive Disorder working group of the Psychiatric Genomics Consortium.Peer reviewedPublisher PD

    Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution

    Get PDF
    The mammary gland undergoes a sophisticated programme of developmental changes during pregnancy/lactation. However, little is known about processes involving initiation of apoptosis at involution following weaning. We used fur seals as models to study the molecular process of involution as these animals display a unique mammary gland phenotype. Fur seals have long lactation periods whereby mothers cycle between secreting copious quantities of milk for 2 to 3 days suckling pups on land, with trips to sea alone to forage for up to 23 days during which time mammary glands remain active without initiating apoptosis/involution.<br /

    The Epoxygenases CYP2J2 Activates the Nuclear Receptor PPARα In Vitro and In Vivo

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are a family of three (PPARalpha, -beta/delta, and -gamma) nuclear receptors. In particular, PPARalpha is involved in regulation of fatty acid metabolism, cell growth and inflammation. PPARalpha mediates the cardiac fasting response, increasing fatty acid metabolism, decreasing glucose utilisation, and is the target for the fibrate lipid-lowering class of drugs. However, little is known regarding the endogenous generation of PPAR ligands. CYP2J2 is a lipid metabolising cytochrome P450, which produces anti-inflammatory mediators, and is considered the major epoxygenase in the human heart.Expression of CYP2J2 in vitro results in an activation of PPAR responses with a particular preference for PPARalpha. The CYP2J2 products 8,9- and 11-12-EET also activate PPARalpha. In vitro, PPARalpha activation by its selective ligand induces the PPARalpha target gene pyruvate dehydrogenase kinase (PDK)4 in cardiac tissue. In vivo, in cardiac-specific CYP2J2 transgenic mice, fasting selectively augments the expression of PDK4.Our results establish that CYP2J2 produces PPARalpha ligands in vitro and in vivo, and suggests that lipid metabolising CYPs are prime candidates for the integration of global lipid changes to transcriptional signalling events

    MGEx-Udb: A Mammalian Uterus Database for Expression-Based Cataloguing of Genes across Conditions, Including Endometriosis and Cervical Cancer

    Get PDF
    Gene expression profiling of uterus tissue has been performed in various contexts, but a significant amount of the data remains underutilized as it is not covered by the existing general resources.). The database can be queried with gene names/IDs, sub-tissue locations, as well as various conditions such as the cervical cancer, endometrial cycles and disorders, and experimental treatments. Accordingly, the output would be a) transcribed and dormant genes listed for the queried condition/location, or b) expression profile of the gene of interest in various uterine conditions. The results also include the reliability score for the expression status of each gene. MGEx-Udb also provides information related to Gene Ontology annotations, protein-protein interactions, transcripts, promoters, and expression status by other sequencing techniques, and facilitates various other types of analysis of the individual genes or co-expressed gene clusters.In brief, MGEx-Udb enables easy cataloguing of co-expressed genes and also facilitates bio-marker discovery for various uterine conditions

    Transcriptome Analysis and SNP Development Can Resolve Population Differentiation of Streblospio benedicti, a Developmentally Dimorphic Marine Annelid

    Get PDF
    Next-generation sequencing technology is now frequently being used to develop genomic tools for non-model organisms, which are generally important for advancing studies of evolutionary ecology. One such species, the marine annelid Streblospio benedicti, is an ideal system to study the evolutionary consequences of larval life history mode because the species displays a rare offspring dimorphism termed poecilogony, where females can produce either many small offspring or a few large ones. To further develop S. benedicti as a model system for studies of life history evolution, we apply 454 sequencing to characterize the transcriptome for embryos, larvae, and juveniles of this species, for which no genomic resources are currently available. Here we performed a de novo alignment of 336,715 reads generated by a quarter GS-FLX (Roche 454) run, which produced 7,222 contigs. We developed a novel approach for evaluating the site frequency spectrum across the transcriptome to identify potential signatures of selection. We also developed 84 novel single nucleotide polymorphism (SNP) markers for this species that are used to distinguish coastal populations of S. benedicti. We validated the SNPs by genotyping individuals of different developmental modes using the BeadXPress Golden Gate assay (Illumina). This allowed us to evaluate markers that may be associated with life-history mode
    corecore