37 research outputs found

    KEBIJAKAN RUMAH SAKIT SWADANA DAN EFEK PEMERATAAN

    Get PDF
    kata kunci: Rumah Sakit - Administras

    Kerr-Newman Black Hole Thermodynamical State Space: Blockwise Coordinates

    Full text link
    A coordinate system that blockwise-simplifies the Kerr-Newman black hole's thermodynamical state space Ruppeiner metric geometry is constructed, with discussion of the limiting cases corresponding to simpler black holes. It is deduced that one of the three conformal Killing vectors of the Reissner-Nordstrom and Kerr cases (whose thermodynamical state space metrics are 2 by 2 and conformally flat) survives generalization to the Kerr-Newman case's 3 by 3 thermodynamical state space metric.Comment: 4 pages incl 2 figs. Accepted by Gen. Rel. Grav. Replaced with Accepted version (minor corrections

    Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach

    Full text link
    We investigate the distribution of gravitational energy on the spacetime of a Schwarzschild black hole immersed in a cosmic magnetic field. This is done in the context of the {\it Teleparallel Equivalent of General Relativity}, which is an alternative geometrical formulation of General Relativity, where gravity is describe by a spacetime endowed with torsion, rather than curvature, with the fundamental field variables being tetrads. We calculate the energy enclosed by a two-surface of constant radius - in particular, the energy enclosed by the event horizon of the black hole. In this case we find that the magnetic field has the effect of increasing the gravitational energy as compared to the vacuum Schwarzschild case. We also compute the energy (i) in the weak magnetic field limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence of the black hole. In all cases our results are consistent with what should be expected on physical grounds.Comment: version to match the one to be published on General Relativity and Gravitatio

    Review on exact and perturbative deformations of the Einstein-Straus model : uniqueness and rigidity results

    Get PDF
    The Einstein-Straus model consists of a Schwarzschild spherical vacuole in a Friedman-Lema^ tre-Robertson-Walker (FLRW) dust spacetime (with or without ). It constitutes the most widely accepted model to answer the question of the in uence of large scale (cosmological) dynamics on local systems. The conclusion drawn by the model is that there is no in uence from the cosmic background, since the spher- ical vacuole is static. Spherical generalizations to other interior matter models are commonly used in the construction of lumpy inhomogeneous cosmological models. On the other hand, the model has proven to be reluctant to admit non-spherical generalizations. In this review, we summarize the known uniqueness results for this model. These seem to indicate that the only reasonable and realistic non- spherical deformations of the Einstein-Straus model require perturbing the FLRW background. We review results about linear perturbations of the Einstein-Straus model, where the perturbations in the vacuole are assumed to be stationary and axially symmetric so as to describe regions (voids in particular) in which the matter has reached an equilibrium regime.M.M. acknowledges financial support under the projects FIS2012-30926 (MICINN) and P09-FQM-4496 (J. Andalucia-FEDER). F. M. thanks the warm hospitality from Instituto de Fisica, UERJ, Rio de Janeiro, Brasil, projects PTDC/MAT/108921/2008 and CERN/FP/123609/2011 from Fundacao para a Ciencia e a Tecnologia (FCT), as well as CMAT, Univ. Minho, for support through FEDER funds Programa Operacional Factores de Competitividade (COMPETE) and Portuguese Funds from FCT within the project PEst-C/MAT/UI0013/2011. R. V. thanks the kind hospitality from the Universidad de Salamanca, where parts of this work have been produced, and financial support from project IT592-13 of the Basque Government, and FIS2010-15492 from the MICINN

    Type IIB supergravity solutions with AdS5 from Abelian and non-Abelian T dualities

    Get PDF
    We present a large class of new backgrounds that are solutions of type IIB supergravity with a warped AdS5{}_5 factor, non-trivial axion-dilaton, BB-field and three-form Ramond-Ramond flux but yet have no five-form flux. We obtain these solutions and many of their variations by judiciously applying non-Abelian and Abelian T-dualities, as well as coordinate shifts to AdS5Ă—X5{}_5\times X_5 IIB supergravity solutions with X5=S5,T1,1,Yp,qX_5=S^5, T^{1,1}, Y^{p,q}. We address a number of issues pertaining to charge quantization in the context of non-Abelian T-duality. We comment on some properties of the expected dual super conformal field theories by studying their CFT central charge holographically. We also use the structure of the supergravity Page charges, central charges and some probe branes to infer aspects of the dual super conformal field theories.Comment: 71 pages, one table. v2: References added, some normalizations corrected, results unchange

    Topology and Wilson lines: global aspects of the double copy

    Get PDF
    The Kerr-Schild double copy relates exact solutions of gauge and gravity theories. In all previous examples, the gravity solution is associated with an abelian-like gauge theory object, which linearises the Yang-Mills equations. This appears to be at odds with the double copy for scattering amplitudes, in which the non-abelian nature of the gauge theory plays a crucial role. Furthermore, it is not yet clear whether or not global properties of classical fields - such as non-trivial topology - can be matched between gauge and gravity theories. In this paper, we clarify these issues by explicitly demonstrating how magnetic monopoles associated with arbitrary gauge groups can be double copied to the same solution (the pure NUT metric) in gravity. We further describe how to match up topological information on both sides of the double copy correspondence, independently of the nature of the gauge group. This information is neatly expressed in terms of Wilson line operators, and we argue through specific examples that they provide a useful bridge between the classical double copy and the BCJ double copy for scattering amplitudes.Comment: 31 pages, 4 figures. Some minor corrections have been implemente

    Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies

    Get PDF
    Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of 3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia. Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls; five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia, and epilepsy

    Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data

    Get PDF
    The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient–parent trios that were generally prescreened for rare metabolic disorders. In the current sample, our rare variant transmission disequilibrium test did not identify individual genes with significantly distorted transmission over expectation after correcting for the multiple tests. While the rare variant transmission disequilibrium test did not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
    corecore