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Abstract We investigate the late time acceleration of the
universe in the context of the Stephani model. This solu-
tion generalizes those of Friedmann—Lemaitre—Robertson—
Walker (FLRW) in such a way that the spatial curvature is
a function of time. We show that the inhomogeneity of the
models can lead to an accelerated evolution of the universe
that is analogous to that obtained with FLRW models through
a cosmological constant or any exotic component for matter.

1 Introduction

Cosmological observations of the cosmic microwave back-
ground (CMB) and the large scale distribution of galaxies
indicate that the universe is homogeneous and isotropic on
scales larger than about 100 megaparsecs [1]. The apparent
acceleration of the expansion of the universe deduced from
type Ia supernova observations and the CMB, WMAP, and
Planck data [2—-6] is one of the most striking cosmological
observations of recent times. In the context of FLRW models
with matter and radiation energy components, the accelera-
tion of our universe cannot be explained and would require
either the presence of a cosmological constant or a new form
of matter which does not clump and dominates the late time
evolution with a negative pressure [7,8]. However, since there
is no explanation for the presence of a cosmological constant
of the appropriate value and there is no natural candidate for
dark energy, it is tempting to look for alternative explana-
tions by simply taking one step back and noticing one of
the fundamental assumptions of cosmology: homogeneity
[9]. Recently, inhomogeneous models of the universe have
become popular among cosmologists [10]. One of the inho-
mogeneous cosmological models which is a solution of Ein-
stein equations with perfect fluid source and conformally flat
is the Stephani model [10-12]. The matter in these solutions
has zero shear and rotation and moves with acceleration [13].
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This solution was obtained by Stephani in 1967. His solu-
tion emerged as one of the spacetimes that can be embed-
ded in a flat five dimensional space [14]. This universe and
some of its subcases have been examined in many papers
(see e.g. [10] and the references therein). It has also been
used in stellar models [15-19] and some generalizations to
FLRW [20,21]. Other papers have pointed out their singu-
larities [22-26] and the thermodynamics of their fluid source
[27-29]. Recently, models with inhomogeneous pressure for
testing the astronomical data related to supernovae observa-
tions have been put forward [30,31]. In these solutions, the
energy density of matter, p, depends only on cosmic time,
t, while pressure, p, depends on both ¢ and r which means
that the temperature varies with spatial position. One of the
objections to this model is their incompatibility with a lin-
ear barotropic equation of the form p(¢) = wpp(¢) with a
constant wy [29]. However, this incompatibility would not
prohibit one to dismiss this solution since the non-barotropic
equation of state cannot be ruled out a priori. The solution
has a curvature parameter which is time dependent and does
not have any special form. Generally, the curvature parame-
ter can be positive at one time and negative at another time,
thus this spacetime is interesting for its topological dynam-
ics among cosmologists. The evolution of the model depends
on some arbitrary functions, accordingly it can be named a
private universe [32]. In the work by Stelmach and Jakacka
[33], they assume that the curvature parameter relates to the
scale factor by K(¢#) = BR(t) where B is a constant. They
showed that with 8 < 0 a cosmological model with dust
source can lead to the accelerated expansion at later times of
evolution.

In this paper, we use the energy balance equation to obtain
the pressure and energy density. We assume a non-barotropic
equation of state to provide a reasonable interpretation for
the Stephani universe. We consider an ansatz of the type
K@) =p8 (R%)" for studying the model. We show that the
field equation is similar to the Cardassian model where the
expansion of the universe is accelerated without postulating
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any exotic matter field [36]. We find that for some specific
values of n the model exhibits accelerated expansion at later
stages of evolution which is in agreement with the recent
Planck data [34].

This paper is organized as follows: In Sect. 2, the Stephani
universe is studied as an alternative model of the universe.
The pressure as a function of spacetime coordinates is
derived. In Sect. 3, we calculate observable quantities such
as the Hubble and the deceleration parameters. We show that
in the considered model a negative deceleration parameter
can be observed which is in agreement with the recent obser-
vations [34]. We derive a general statement for the age of the
universe in the model. We show how a positive accelerated
expansion of the universe can appear in the model without
using any exotic matter. In the last section, we will draw some
conclusions.

2 Spherically symmetric Stephani universe

The line element of the spherically symmetric Stephani uni-
verse in comoving coordinates is usually given in such a way
as to emphasize its similarity to FLRW models [10]. How-
ever, we use the following alternative coordinates [13] which
is more appropriate for simplifying our calculations that we
are going to do in the next section

ds? = —D%dr? + V2[dr* + £%(d6? + sin® 6dg?)],
_ 1+ F2(K — RK p) R
- 1+ KF? " 1+ KFY

ey

where K (¢) is the curvature parameter, R(¢) is the scale factor
and K g = I;—‘; = g—llg, and the functions f(r), F(r) are
defined by the three possible combinations

=r, F:—,
f=r 5
r

f=sinr, F =sin (5) , (2)
f =sinhr, F =sinh (%) .

The general transformation that relates the relations (2) with

the radial coordinate r and the radial coordinate of the
7

1 + ko2 /4
ko = 0,=£1. Also we assume that the energy-momentum
tensor is that of a perfect fluid,

Stephani universe, 7, is given by r = f where

T = (p + pyu’u’ + pgh", 3)

where ut = %8,“ is the fluid 4-velocity and p, p are the
mass—energy density and the pressure, respectively. The time
coordinate in the metric (1) has been selected such that the
expansion scalar ® = u"* u reads

s
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The matter in this universe has zero shear and rotation but
moves with acceleration which is defined as i, = u,.,u",
whose value for the metric (1) is

D RK
o= 50 o

2[4+ KF2[1 + F2(K — RK,R)](S"'

&)

Hence the covariant form of the energy balance u,, T I,JV =0

and the momentum balance /1, T ‘,70 = O takes the following
forms, respectively:

u T, = p+(p+ p)© =0, (6)
and
hMVTU(;g‘ = huvp,v + (o + piy, =0, (7

where p = u*p , is the proper time derivative and 2"V is
the projection tensor h*¥ = utu’ + ghv.

By inserting the line element (1) and the energy-
momentum tensor (3) into Einstein field equations the time-
time component of the field equations will be

R, > (K+k) 87G ®)
R Rz~ 3"
where
0, forf 4
, forf=rF=_,
v r 2 r
ko=11, for f = sin(r), F = sin (E) , )

—1, for f = sinh(r), F = sinh (%) .

Equation (8) shows that p is a function of ¢ only. We can
obtain the form of pressure p(r, t) from Eq. (6) as

1+ KF? (10)
1+ F2(K—RKR) |

R
P, 1) = —p(t) - 51’;—[

and from the equation of momentum balance (7) we arrive at

, fR*0.RK &
P+ =0
6[1+ (K — RK g)F?]

(11)

where prime denotes derivative with respect to r.

The Stephani universe has two arbitrary functions of time
(K (), R(t)) whose values are not prescribed [13]. We sup-
pose that the curvature parameter and the matter energy den-
sity have the following power-law forms [36]:
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R\"
K@) =58 (R_o> ; 12)
and

R\
P =po (R_o> , (13)
we set o« = —3(1 + wp) where wy is the equation of state

parameter which exists in FLRW models, g and n are con-
stants, Ry and po are the present values of the scale factor
and matter energy density, respectively. A time derivative of
Eq. (8) leads to the Raychaudhuri equation given by

Ry An G Bn [ R\"?
S T 43w — = (—) . 14
R 3 (I +3wo)p 272 \ &g (14)

Inserting Egs. (12) and (13) into Eq. (10) leads to

p(r,t) = <—l +

Note that at the symmetry center (r ~ 0) for a matter-
dominated universe (wg = 0) pressure vanishes, but at large
distances from the symmetry center it will be negative, thus
in the presence of a non-relativistic matter, due to a negative
pressure at large distances, the expansion can be observed.
By comparing Eq. (15) with the general equation of state

(1 +wo) (1 + B(4)"F?)
L+ By (1 —n)F?

)p(t)- (15)

with a non-constant parameter w = — we get
(1+wo) (1 + B(F)"F?)
w(r ) = [-1+ N : (16)
1+ ()" (1 —n)F?

which can be regarded as the dynamical equation of state
parameter for the Stephani universe. For 8 = 0 (switching
off the inhomogeneities), we have w = wq and the model
reduces to the FLRW universe.

3 Hubble and deceleration parameters

In order to study the cosmological parameters which can be
determined via observational data, it is important to derive
some of the observational quantities in the Stephani universe.
The kinematics of the universe is described by the Hubble
parameter H and the deceleration parameter g. For calculat-
ing these parameters we rewrite the metric (1) in the comov-
ing coordinate [z, r, 6, ¢] which reduces to

ds? = —dt? + V2[dr? + £2(d6? + sin® 0d¢?)], (17)
where we have defined

D?dt* = d7>. (18)

Now the definitions for H and g will be

Lov. 1 9%V
1T THV o

= ——, 19
V ot (19)

Note that due to the inhomogeneity that occurs in this uni-
verse, the Hubble and deceleration parameters will no longer
be spatially constant. However, it is possible to choose a time
parameter in which the spatial dependence of the Hubble and
deceleration parameters can vanish [33]. Consequently, the
above definition for the Hubble parameter reduces to

1 dR

= ar (20)

Also the deceleration parameter reads
R\" 2
1+8(&%) F g,
n 2
L+ —n) (&) F2HR
R\" 2
np (R—O) F
R\" 2’
l+/3(1—n)<R—0> F2
which can be rewritten as
n n
(14+8(&) F2)a+ns(£) F
R\ 2
1+/3(1—n)(R—0) F

q(r’[)z_

+

21

) (22)

q(r,t) =

where

—3(14+wp) n—2
4n G R np R
R SPe03w0 () T (7)
== H2R - 871G R —3(1+wo) k (R -2 8 (R n—-2"
BERG (RT)) R (ITO) TR (70)

(23)

Withn = 1 Eq. (22) reduces to the deceleration parameter
obtained in the work by Stelmach and Jakacka [32] in which
they showed that with a negative § the deceleration parameter
decreases with increasing distance to the observed galaxy.

The resemblance of Eq. (8) with the first dynamical equa-
tion of the FLRW universe allows us to insert Eqgs. (12) and
(13) into Eq. (8) to get an expression between H, Hy, 2 and
R

H\2 _ R\ 2 g R\ ~3(+wo)
H() = Néko,0 RO 0,0 RO

R n—2
1 —Qoo— R — , 24
+ ( 0.0 — Qko,0) (Ro) (24)
where
00 —ko
Qoo=— li=n, 25
0,0 o |t o ko,() R(Z)Hg ( )
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Moreover, by setting ¢t = ty in Eq. (24) the value of the
constant § is given by

B = (Q0,0 + Qup0 — 1) RGH; . (26)

Now we can find the age of the universe by integrating Eq.
(24), which yields

1 /1 dx '
Hy Jo x\/90,0X73(1+WO)+Qk0,0x72+(1—QO—Qko,O)x'FZ
(27)

0]

R . . . . .
here x = — is the scale of the universe in units Rg. With

n = 1Eq. (2(7)) corresponds to the age of the universe obtained
in the work by Stelmach and Jakacka [33]. For the present
epoch we assume that the universe is only composed of dust
(wo = 0) and for simplicity in our calculations we putky = 0
as we do in flat FLRW models. Accordingly, Egs. (21), (24),
and (27) reduce to

q(m)zl 1+’3<1%)an

2\ 1480 -n) (R%) P2

Qo+ n@uo— 1) (&)
X

Qo —n@uo— 1) (&)
R () R o)

14 B(1 —n) (%) P2
dx
29)

1 1
o = —f )
Ho Jo x\/Qm,ox*3 + (1 — Qm,o) xn—2

and

H 2 R -3 R n—2
(i) =) +0-oa(z) e

respectively. The lookback time (+' = tHp) as a function
of the energy density £2,, ¢ in the model for some specific
values of n and in the FLRW models are presented in Fig. 1.
We realize that the age of the universe in the discussed model
for n > 2 is larger than in FLRW models corresponding to
the same values of the parameters Hy = 67 KmMpc~'s~!
and €2, = 0.31 [34]. As an example according to Eq. (29)
by setting n = 3 the age of the universe will be 14.38 Gyr.
At the late stage of the cosmological evolution when the
scale factor is large, the first and the second terms in Eq.
(30) can dominate and we can apply the following approx-
imations. From now on we assume that | Sx" F2 [> 1. We
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Fig. 1 Lookback time " = t Hy in the spherically symmetric Stephani
cosmological model for some selected values of n and in FLRW model
as a function of the energy density €2, o

consider Eq. (30) in the late time epoch which can be solved
for the scale factor to yield

THZ(1 = Quo)t?, n=1,
R exply/1 — Q2,0 Hot],

Ro |[Ho(1—-1%) 1—9,,,,0%;2—",

2 2
(3 Hoy/Qm.0) 313,

n=2,

n>1, or —1<n<0,
n<—l.

€1V}

We should point out that the case n = 2 has an exponen-
tial form for the scale factor in the late time stage which is
the same as the vacuum FLRW models with cosmological
constant. However, as mentioned before, the universe in this
model is only filled with dust which leads to the above expres-
sions. Inthe casen < —1 we get a sort of dust dominated uni-
verse. [t follows from Eq. (31) that the deceleration parameter
for the late time epoch can be derived for the above stages as

3 Quo — DRGHG (F)F?, n=1,

—1, n=2,

q@r )~ . n>1, —1l<n<0,
=+, n<-—1.

(32)

For all of the above values of n, the deceleration parameter
is negative, thus the accelerated expansion of the universe
is obtained without using any exotic matter or cosmological
constant. In Fig.2 the deceleration parameter is plotted for
n = 2.5 as a function of the dimensionless parameters y =
RoHpr and t' = tyHy.

It is seen from Fig. 2 that the acceleration becomes larger
as the distance to the observed object is increased. In other
words, in the inhomogeneous universe acceleration of the
expansion increases with the distance.
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Fig. 2 The deceleration parameter in the spherically symmetric
Stephani cosmological model as a function of the dimensionless param-
eters y = RoHor and t' = toHy forn = 2.5

It should also be noted that Egs. (29) and (30) can be
rewritten as

87 G
H? = — Pt Boy, (33)

where the constants B and y are defined as

2—n (34)
9 y - N
%ﬁ 3

5 _ Ho( =0

The above equation is similar to the model proposed by
Freese and Lewis [34] which is an alternative model explain-
ing the accelerating universe. This model is called Cardassian
model where the FLRW equation is modified by the presence
of the term p?. This seems to be interesting as regards the
way that the expansion of the universe is accelerated automat-
ically by the presence of the second term without suggesting
any unknown form of exotic matter [35].

4 Conclusion

In this paper we considered the inhomogeneous Stephani uni-
verse characterized with a time dependent curvature index.
Although we obtained results for general w (equation of state
parameter), but we focused our attention on the model with
only dust as the fluid component of the universe. We found the
age of the universe in the model which was remarkably larger
than the corresponding age in the FLRW models without
exotic matter. We derived the deceleration parameter which
was dependent on the scale factor and radial coordinate,
moreover, we showed that the acceleration becomes larger
while increasing the distance. The fore-mentioned results

n
were based on the ansatz of the type K () = S (R%) for the

spatial curvature parameter and we showed that in the late
time epoch of evolution, by choosing the appropriate values
for n, the power-law solution can be revived in the considered
model.
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