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1 Introduction

Since its inception just over a decade ago [1–3], the double copy has remained an intensively-

studied relationship between gauge and gravity theories. Its first application was to scatter-

ing amplitudes, and there is by now a large amount of evidence for its validity at arbitrary

loop orders [2, 4–43], either with or without supersymmetry. The double copy has also been

extended to classical solutions [44–81], some of which are exact solutions of their respective

field equations. There are ongoing hopes that this may provide new calculational tools for

classical General Relativity, including for astrophysical applications such as gravitational

wave detection. In parallel to this effort, however, it is worth examining the conceptual

underpinnings of the double copy correspondence, and to try to ascertain the limits (if

any) of its validity. If, for example, the double copy can be extended to arbitrary (non)-

perturbative solutions in gauge and gravity theories, this clearly indicates a profound new

correspondence between different quantum field theories, that may even suggest that our

traditional approach to thinking about field theory needs revisiting. One way to probe

this is to find explicit non-perturbative solutions in theories that enter the double copy

correspondence, such as the biadjoint scalar theory considered in refs. [82–85].
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Figure 1. Conceptual structure of the double copy for exact solutions, in which (non-)abelian

objects must double copy to the same gravity solution, regardless of the gauge group.

There is, however, another approach to extending the conceptual framework of the

double copy. This is to note that nearly all previous incarnations in either a classical

or quantum context have involved local quantities. Scattering amplitudes, for example,

have locality built in, even if this is not manifest. Furthermore, the classical double copy

initiated in ref. [44] involves products of fields at the same spacetime point, and thus

is again manifestly local. If it is true that there is a deep connection between gauge

and gravity theories, it must be possible to match up global data — such as topological

information — between them. This was examined recently in ref. [86] which considered the

single copy of the Eguchi-Hanson instanton, alas without providing any conclusive evidence

that topological information can be double-copied. Nevertheless, the idea clearly deserves

further investigation, and is thus the main aim of this paper.

For scattering amplitudes and (non-linear) perturbative classical solutions, the non-

abelian nature of the gauge theory plays a crucial role in the formulation of the double

copy procedure. As is by now well-known, there exists a special class of gravity solutions

— time-independent Kerr-Schild metrics — whose single copy gauge solution obeys the

linearised Yang-Mills equations, and thus looks like an abelian gauge theory solution [44].

In what sense the gauge theory solution is genuinely non-abelian is then rather obscure.

However, by analogy with amplitudes we must be able to find a construction such that exact

classical solutions with different gauge groups map to the same gravity solution, as shown

in figure 1. This follows from the fact that colour information is removed when performing

the double copy, so that a given gravity solution does not care which gauge group one

started with. Indeed, figure 1 has a precedent in the study of infrared singularities of

amplitudes [27], and was also considered for solutions of SU(2) gauge theory in ref. [85]

(see refs. [35, 36] for yet more examples). However, this would appear to forbid the ability

to map topological information between gauge and gravity solutions: topological invariants

(e.g. characteristic classes) of a gauge field usually rely crucially on which particular gauge

group one considers, and this information is irrelevant after taking the double copy.

In this paper, we will see that it is indeed possible to relate exact solutions with non-

trivial topology between gauge and gravity theories in a meaningful way. First, we will
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take a particular solution of pure gauge theory, namely a (singular) point-like magnetic

monopole. For general gauge groups, this is known to have a non-trivial topology, where

the latter may or may not be classified by a known topological invariant. However, it can

always be characterised by a certain patching condition between gauge fields in different

spatial regions. Furthermore, the non-abelian monopole can always be written in a gauge in

which it takes the form of a trivially dressed abelian-like monopole solution, whose double

copy is already known [45] to be the Taub-NUT solution [87, 88]. There is an established

patching condition for the Taub-NUT metric that characterises its non-trivial topology [89],

and we will see that this precisely corresponds to the similar condition in gauge theory,

independently of the nature of the gauge group. Thus, we provide an explicit example

of an exact solution whose local and global properties obey the construction of figure 1,

and which fully generalises the preliminary observations regarding SU(2) monopoles made

recently in ref. [85]. Furthermore, we will see that all of our patching conditions — in either

gauge or gravity theories — can be expressed in terms of certain Wilson line operators.

This will allow us to make contact between the study of magnetic monopoles in this paper,

and previous results concerning the structure of scattering amplitudes in special kinematic

limits [27, 29].

The structure of this paper is as follows. In section 2, we briefly review the Kerr-

Schild double copy. In section 3, we examine (non-)abelian monopoles, and describe the

characterisation of their non-trivial topology. In section 4, we study the topology of Taub-

NUT spacetime, and relate this to the single copy gauge theory solutions considered in

section 3. The relevance and implications of Wilson lines will be outlined in section 5.

Finally, we discuss our results and conclude in section 6.

2 The Kerr-Schild double copy

The aim of the classical double copy is to associate a given non-abelian gauge theory

solution with a gravitational counterpart, in a way that overlaps with the known BCJ

double copy for scattering amplitudes where appropriate [1–3]. For general solutions, this

must be carried out order-by-order in the relevant coupling constants. However, a certain

special family of exact gravity solutions is known, which all have well-defined gauge theory

single copies. These are the Kerr-Schild metrics (see e.g. [90] for a modern review), which

can be defined as follows:1

gµν = ηµν + κhµν , hµν = φkµkν . (2.1)

Here hµν is the graviton field representing the deviation from the Minkowski metric ηµν ,

and κ =
√

32πGN , where GN is the Newton constant. The Kerr-Schild form corresponds

to the graviton decomposing into a scalar field φ multiplying an outer product of a vector

kµ with itself, where the latter must satisfy null and geodesic properties:

ηµνk
µkν = gµνk

µkν = 0, k · ∂kµ = 0. (2.2)

1Note that we use the (+,−,−,−) metric signature throughout.
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This ansatz turns out to linearise the Einstein equations, such that exact solutions can be

more easily found. Each such solution is characterised by the explicit forms of φ and kµ,

and ref. [44] proved that for every time-independent Kerr-Schild graviton, one may then

construct a single copy gauge field

Aµ = (caTa)φkµ, (2.3)

which obeys the linearised Yang-Mills equations. Here ca is an arbitrary constant colour

vector, and Ta is a generator of the gauge group. The extension to symmetries other

than time translational invariance has been considered in ref. [91]. Clearly eq. (2.3) is not

unique: for a particular gauge group, any choice of ca will suffice. We may furthermore

pick any gauge group. Indeed, it is instructive to write eq. (2.3) as

Aµ = (caTa)Aabel.
µ , (2.4)

where Aabel.
µ is the solution of a purely abelian gauge theory. If the latter has a known

Kerr-Schild double copy, any solution of the form of eq. (2.4), in which the colour structure

completely factorises, can also be easily double copied. One simply strips off the colour

charge (caTa), and double copies the gauge field as if it were abelian. Note that this

provides an explicit realisation of figure 1, in which both abelian and non-abelian classical

solutions are taken to map to the same gravity solution.

There is a growing list of specific cases of the Kerr-Schild double copy which have

been examined in detail. Arguably the simplest is that of a point-like mass M in gravity

giving rise to the Schwarzschild metric, for which the single copy is a point-like (elec-

tric) charge [44].2 Particularly relevant for this paper is the Taub-NUT solution in grav-

ity [87, 88], which was examined from a double copy point of view in ref. [45]. This has

a Schwarzschild-like mass term, but in addition a so-called NUT charge N , which gives

rise to a rotational character in the gravitational field at infinity. In particular (Plebanski)

coordinates, the relevant graviton field can be written in a so-called double Kerr-Schild

form [92]:

hµν = Mφkµkν +Nψlµlν , (2.5)

where φ and ψ are distinct scalar fields, and kµ, lµ different vectors that obey certain

mutual orthogonality conditions. Such an ansatz will not linearise the Einstein equations

in general, but happens to do so for Taub-NUT. One may then single copy the solution to

create a gauge field

Aµ = (caTa)φkµ + (c̃aTa)ψlµ. (2.6)

Reference [45] analysed this solution in an abelian gauge theory, and concluded that it was

a dyon, possessing both electric and magnetic monopole charge. These are represented by

the first and second terms in eq. (2.6) respectively, such that for the case of a pure NUT

charge in the gravity theory, one may follow eq. (2.4) and write

Aµ = (c̃aTa)AD
µ , (2.7)

2Going the other way, the double copy of a point charge may be more general than a pure gravity

solution, as discussed in refs. [57, 60, 78].
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where3

ADµ = −g̃ (0, 0, 0, cos θ − 1) (2.8)

is the well-known gauge potential for a Dirac magnetic monopole in the U(1) (abelian)

gauge theory of electromagnetism. We have here expressed the result in spherical polar

coordinates (t, r, θ, ϕ), and denoted the magnetic charge parameter that would arise in a

purely abelian theory by g̃. Reference [45] did not explicitly check that eq. (2.7) represents

a genuine magnetic monopole solution in the case of a non-abelian gauge theory. We will

see in the following section that this is indeed the case, such that g̃(c̃aTa) is the appropriate

non-abelian generalisation of the magnetic charge. In line with the above comments, the

double copy of eq. (2.7) is straightforward, and always results in a pure NUT charge

in gravity.

3 (Non)-abelian magnetic monopoles and their topology

In the previous section, we have seen that (non)-abelian magnetic monopoles with arbitrary

gauge groups all map to a pure NUT charge in gravity. In this section, we discuss how to

characterise the non-trivial topology of monopole solutions, in both abelian and non-abelian

gauge theories.

3.1 Abelian case

The gauge potential for the Dirac monopole of eq. (2.8) has a singularity at θ = π, cor-

responding to the entire negative z-axis, which is usually referred to as the Dirac string.

Whilst it is not possible to remove the physical singularity at r = 0 (i.e. the location of

the singular point-like monopole), the orientation of the string singularity can be modified

by performing a gauge transformation. To construct a gauge field that is everywhere non-

singular away from the origin, one must employ at least two coordinate patches, such that

the gauge field is non-singular in each. Where these coordinate patches overlap the gauge

fields defined in each can then be glued together.

This idea was first discussed by Wu and Yang, who gave an elegant fibre bundle

interpretation [93]. To briefly summarise for the uninitiated: gauge fields can be defined

as connections on principal fibre bundles, namely manifolds that look locally like a product

spaceM×G, whereM denotes Minkowski spacetime, and G the gauge group. One refers

to M as the base space and G as the fibre, where there is one fibre attached to each point

in the base space. Whilst such a bundle may look locally like a product space, it might

differ from this globally. Thus, for a given gauge group, there may be more than one fibre

bundle with the same local structure. The classification of topologically non-trivial gauge

fields is then entirely equivalent to the classification of fibre bundles.

The Dirac monopole is singular at the origin and thus the base space is Minkowski

spacetime with the origin removed, M− {0}. The spatial part of this manifold can be

3Here, and for the rest of the paper, spherical coordinates are defined such that

Axdx+Aydy +Azdz = Ardr +Aθdθ +Aφdφ.
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Figure 2. (a) The Dirac monopole field of eq. (2.8) has a string-like singularity that cuts the

sphere at infinity at the south pole; (b) Wu-Yang construction of a non-singular gauge field: one

may take non-singular gauge fields in the northern and southern hemispheres, such that they are

patched together by a gauge transformation on the equator C.

continuously deformed into the surface of a sphere at infinity. Adding the time direction,

the base space is now topologically equivalent to S2×R. The monopole field of eq. (2.8) is

tangential to the surface of the sphere, and it is well known that it is impossible to define a

vector field on S2 without it being ill-defined at one point. This itself explains the presence

of the Dirac string, which may be taken to puncture the sphere at infinity at the singular

point, as shown in figure 2.

We indeed then need at least two coordinate patches in order to define the gauge field

throughout all space, which we can take to be the northern and southern hemispheres

respectively. We are free to define separate gauge fields ANµ and ASµ in each patch, as

shown in figure 2, provided that they are related by a gauge transformation in the region

of overlap, namely on the equator C. This is straightforward to achieve in practice. Firstly,

the field of eq. (2.8) is already non-singular in the northern hemisphere, and so can be taken

as ANµ . One may then define the gauge field

ASµ = −g̃ (0, 0, 0, cos θ + 1) . (3.1)

This is related to ANµ by the gauge transformation

ASµ = ANµ −
i

g
S(ϕ)∂µS

−1(ϕ), (3.2)

where g is the coupling constant, and

S(ϕ) = e2igg̃ϕ (3.3)

is an element of the gauge group. The field of eq. (3.1) has a string-like singularity on the

positive z axis, and is thus non-singular throughout the southern hemisphere as required.

Furthermore, the two fields can be matched at the equator, where they are equivalent up to

the gauge transformation in eq. (3.2). This completes the construction of a single-valued,

non-singular gauge field away from the origin.
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The patching together of two distinct gauge fields constitutes a non-trivial topology,

which turns out to be related to the magnetic charge. To see this, note that the magnetic

flux is given by

ΦB =

∫∫
S
FµνdΣµν , (3.4)

where dΣµν is the area element on the surface S corresponding to the 2-sphere at infin-

ity. Separating the surface integral into two separate contributions for the northern and

southern hemispheres, one may apply Stokes’ theorem to rewrite eq. (3.4) as

ΦB =

∮
C
dxµ

(
ANµ −ASµ

)
= 4πg̃, (3.5)

where we have used eqs. (3.2), (3.3). This justifies the statement that g̃ represents the

amount of magnetic charge. Furthermore, the requirement that the gauge transformation

of eq. (3.2) be single-valued (i.e. that S(2π) = S(0) in eq. (3.3)) implies the famous Dirac

quantisation condition

gg̃ =
n

2
, n ∈ Z, (3.6)

which relates the electric and magnetic charge. The relation to the topology of the fibre

bundle can be seen from the fact that there are discretely different U(1) principle bundles,

each of which is classified by the so-called first Chern number. The latter, up to a constant

factor, is given precisely by eq. (3.4).

There is another way to derive the quantisation condition, which makes the relevant

topological aspects clearer, and which will also pave the way for the non-abelian discussion

in the following section. Consider the family of circles C(θ) on the 2-sphere at infinity4

characterised by constant values of the polar angle θ. One may associate each such curve

with a group element as follows:

U(θ) = exp

[
ig

∮
C(θ)

dxµAµ

]
. (3.7)

At θ = 0, the curve C(0) is an infinitesimally small loop around the north pole, and thus

U(0) corresponds to the identity element of the gauge group. As θ increases from 0 to

π, the curves gradually sweep over the sphere as shown in figure 3(a), culminating in an

infinitesimally small loop at the south pole, such that U(π) also corresponds to the identity

element. At θ = π/2, the definition of the gauge field jumps from the northern field ANµ
to the southern field ASµ . We may depict this as shown in figure 3(b). The curve obtained

in the gauge group as θ increases from zero proceeds clockwise from the lower point as

shown, reaching point A at θ = π/2. Upon switching to the southern gauge field, there is

a discontinuity and the curve continues from point B. However, eq. (3.7) represents the

phase that a charged particle would experience upon traversing the curve C(θ). For this

to be single-valued on the equator, it follows that the points B and A should correspond

to equivalent group elements (indicated by the dotted line). Thus, as θ varies in the range

[0, π], a closed curve is swept out in the gauge group G. The set of topologically non-trivial

4In fact, any sphere surrounding the origin will do e.g. ref. [93] uses a unit radius.
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(a) (b)

A B

Figure 3. (a) A family of curves for fixed values of the polar angle θ, where θ = 0 and θ = π

correspond to the north and south poles respectively; (b) closed loop in the gauge group G associated

with the family of curves.

gauge fields is then in one-to-one correspondence with the set of topologically inequivalent

closed loops in G, namely the possible ways in which one can join the points A and B in

figure 3(b). These closed loops are classified by the first homotopy group π1(G), where for

the present case one has

π1(U(1)) = Z (3.8)

i.e. the set of integers under addition. This simple result follows from the fact that the

group manifold of U(1) is a circle, such that any closed loop may wind around this circle

an integer number of times. Put another way, the fact that the two points A and B

in figure 3(b) correspond to equivalent group elements imposes — via eq. (3.7) — the

condition

g

∮
C(θ)

dxµANµ = g

∮
C(θ)

dxµASµ + 2πn, n ∈ Z, (3.9)

which is precisely equivalent to eqs. (3.5), (3.6).

3.2 Non-abelian case

In this section, we review the properties of singular point-like non-abelian magnetic

monopoles, where we will follow the presentation of ref. [94] closely. Our ultimate aim

is to identify the relevant quantity that specifies their non-trivial topology, and to inter-

pret this from the point of view of the double copy.5 First, let us address the form of a

non-abelian monopole field Aµ = AaµT
a.

3.2.1 Gauge field of a non-abelian monopole

Assuming a static field, we may choose a gauge such that Aa0 = 0. The remaining compo-

nents of the gauge field can then be expanded in inverse powers of the radial coordinate:

Aai =
aai (θ, φ)

r
+O(r−2) , (3.10)

5Most of the literature on non-abelian monopoles focuses on spontaneously broken theories with addi-

tional scalar fields, due to the non-singular nature of the solutions. For useful reviews of the singular case,

see e.g. refs. [94, 95].
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where Aai and aai belong to the Lie algebra of G. This gives rise to a magnetic field

Ba
i = −1

2
εijkF ajk , (3.11)

where the field strength Fµν = F aµνT
a is defined by

Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν ] . (3.12)

For a point-like monopole solution we require a magnetic field with r−2 dependence, and

therefore the O(r−2) terms in the potential can be omitted. To avoid any issues arising

from the unavoidable singularity at the origin, we consider the field only for r > r0, where

r0 is the small but non-vanishing radius of a sphere centred on the monopole. To simplify

the analysis, we first choose a gauge in which Ar = 0. This can be done by finding a gauge

transformation such that

Ar → UArU
−1 + U∂rU

−1 = 0 . (3.13)

A solution to this expression is

U−1(r, θ, φ) = P exp

[
i

g

∫ r

r0

dr′Ar(r
′, θ, φ)

]
, (3.14)

where P denotes path ordering. This describes an integration along radial lines, with the

lower bound protecting the integral from the singularity at the origin. A similar procedure

can be implemented for Aθ by integrating along lines of constant r and φ, resulting in

a gauge in which Aθ = 0. This leaves Aφ as the only non-zero component of the gauge

field, the form of which may be determined from the equations of motion. The monopoles

considered here are time-independent, so the F0i terms in the field strength of eq. (3.12)

vanish. Furthermore, the assumptions made thus far imply that at large distances Aφ is

independent of r. Hence, the only non-vanishing component of the field strength is

Fθφ = ∂θAφ . (3.15)

The Yang-Mills field equations in spherical coordinates are

∂µ
√
ηFµν − ig[Aµ,

√
ηFµν ] = 0 , (3.16)

where η is the absolute value of the determinant of the Minkowski metric. The field

equations give rise to two non-trivial equations of motion:

∂θ
√
ηFθφ = 0 , (3.17)

∂φ
√
ηFφθ − ig[Aφ,

√
ηFφθ] = 0 . (3.18)

Equation (3.17) results in

∂θ

(
1

sin θ
∂θAφ

)
= 0 , (3.19)
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which admits a general solution

Aφ = M(φ) +
QM (φ)

4π
cos θ , (3.20)

where M(φ) and QM (φ) are matrices in the Lie algebra of G, and the factor of 1/4π has

been included by convention. As in the abelian case, it is not possible for this potential

to be well-defined for all θ and we will once again end up with a Dirac string. Choosing

this to lie along the negative z-axis, we require that Aφ vanishes at θ = 0 to avoid another

singularity at the north pole. This necessitates that

M(φ) = −QM (φ)

4π
. (3.21)

Utilising eqs. (3.20) and (3.21) in the second equation of motion, eq. (3.18), yields

∂φQM (φ) = 0 , (3.22)

and hence QM is a constant matrix. The general solution for the gauge field is therefore

Aφ =
QM

4π
(cos θ − 1). (3.23)

The importance of this from a double copy perspective is that it is precisely of the form of

eq. (2.7). Thus, faced with a point-like magnetic monopole in an arbitrary gauge group,

one can always choose a gauge such that the double copy is straightforward, and will lead

to a pure NUT charge in gravity.

3.2.2 Allowed magnetic charges

The gauge field of eq. (3.23) is defined with a Dirac string aligned along the negative z-axis.

We may define this to be a “northern” gauge field AN
µ by analogy with the abelian case,

and define a second potential whose only non-zero component is

AS
φ =

QM

4π
(cos θ + 1), (3.24)

for use in the southern hemisphere. These two gauge fields are related by a non-abelian

gauge transformation

AN
µ = S(ϕ)AS

µS−1(ϕ)− i

g
S(ϕ)∂µS

−1(ϕ), (3.25)

where

S(ϕ) = exp

[
igQMϕ

2π

]
. (3.26)

Similarly to section 3.1, we may impose the single-valuedness condition,

S(0) = S(2π),

which leads to a generalised form of the Dirac quantisation condition:

eigQM = I, (3.27)

– 10 –
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where I denotes the identity element in G. To analyse this condition further, one may

write the magnetic charge matrix as a linear combination of the generators Hi of the

Cartan subalgebra of G [96]:

QM = 4πk ·H , (3.28)

where k = (k1, . . . ., kr) is known as a magnetic weight vector. Taking this form of the

charge matrix in the generalised quantisation condition, eq. (3.27), results in

k ·w =
n

2g
, n ∈ Z , (3.29)

where w is a weight vector of the representation in which the Cartan generators are ex-

pressed. Classifying the possible monopoles in an arbitrary gauge group G hence reduces

to determining which magnetic weight vectors correspond to physically distinct and stable

monopoles. The magnetic weights are the weights of a Lie group G∗ that is dual to G. To

see this, recall that roots α and weights w must always satisfy6

2w ·α
α2

= N , N ∈ Z . (3.30)

Hence, a possible solution to eq. (3.29) is to take k as an element of the root lattice of G∗.

Recall that the root lattice of a Lie group is the sublattice of the group’s weight lattice

which contains the root vectors themselves. Thus, the constraint in eq. (3.29) is satisfied

for

k =
∑
i

niα
(i)∗ =

∑
i

ni
α(i)

|α(i)|2
, (3.31)

where ni are integers and α∗ = α/|α|2 are the roots of the dual group G∗. We can therefore

consider two systems of roots and weights classifying two separate gauge groups, which,

following the terminology of ref. [96], we refer to as the electric gauge group G and the

magnetic gauge group G∗. The electric group G has roots α and weights w, while the

magnetic group G∗ has roots α∗ and weights k. The electric weights w are fixed by the

fields present in the theory, and the magnetic weights k represent the possible magnetic

charges. If both groups share the same Lie algebra, then their root vectors will differ only

by a rescaling. Furthermore, if G is the universal covering of the algebra then all possible

magnetic weights are specified by eq. (3.31). In general more solutions will exist. Further

examples of electric gauge groups G and their magnetic duals G∗ can be found in ref. [96].

Näıvely, one would expect an infinite number of possible magnetic charges, correspond-

ing to arbitrary weights in the dual weight lattice. However, not all of these correspond

to physically distinct or allowable magnetic monopoles. For example, one may show that

magnetic charges associated with weights k and wk′(k) are gauge-equivalent, where

wk′(k) = k− 2k′
k · k′

k′ · k′
(3.32)

corresponds to a Weyl reflection in the hyperplane perpendicular to a third weight k′. After

factoring out Weyl reflections, the allowed magnetic weights may still live in a number of

6For useful reviews of group theory relevant for the present context, see e.g. refs. [94, 97].
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different sublattices. Weights which lie within the same sublattice can be connected by

an integral sum of roots, while weights in different sublattices cannot. It can be shown

that monopoles with higher values of magnetic charge are dynamically unstable, such that

they always decay to configurations possessing the minimum value of tr(Q2
M ) within each

sublattice [98]. As the origin of the weight lattice corresponds to the zero magnetic charge

configuration, this implies that all monopoles defined by magnetic weights within the same

sublattice as the origin will decay to the vacuum state.

It is important to note that this instability of monopoles with non-minimal magnetic

weights within a given sublattice necessitates a careful specification of the gauge groups.

If either the electric or magnetic gauge group is the universal covering group G̃ of the Lie

algebra, then the other will be the adjoint group G̃/K, where K is the centre of G̃. Thus

if we consider Yang-Mills with G = SU(N), the magnetic group will be G∗ = SU(N)/ZN .

However, all weights of SU(N)/ZN lie in the same sublattice as the weight at the origin of

the lattice. All monopole solutions for G = SU(N) are therefore dynamically unstable and

will reduce to the vacuum solution. This, however, is not the case for G = SU(N)/ZN and

G∗ = SU(N), as the N sublattices of the weight lattice of SU(N) allow for N − 1 stable

monopole solutions. This has an elegant topological interpretation that is directly related

to the abelian case, as we now describe.

3.2.3 Topology of the non-abelian monopole

In section 3.1, we reviewed the Wu-Yang fibre bundle interpretation of the Dirac monopole,

in which two gauge fields are patched together, thus generating a gauge configuration with

non-trivial topology. In this section, we describe the generalisation of this picture to the

non-abelian case [93]. We are again considering singular monopoles, so that the origin

of spacetime is removed, and spatial slices are then topologically equivalent to S2. This

in turn necessitates at least two coordinate patches, which we may again choose to be

the northern and southern hemispheres of figure 2(b). Similarly, we may also construct

the family of curves of figure 3, each of which can be associated with an element of the

gauge group,

U(θ) = P exp

[
ig

∮
C(θ)

dxµAµ

]
, (3.33)

where P denotes path ordering of the (non-commuting) gauge fields Aµ along the contour.

As θ varies from 0 to π, this traces out a curve in the electric gauge group G, where the

points θ = 0, π both correspond to the identity element. At θ = π/2, the gauge field

switches from its northern to southern form, leading once again to the situation shown in

figure 3(b), where A and B must correspond to equivalent group elements. Denoting the

group of such transformations between A and B by H, one may write the general patching

condition between the northern and southern gauge fields as

P exp

[
ig

∮
C
dxµAN

µ

]
= UH

{
P exp

[
ig

∮
C
dxµAS

µ

]}
, (3.34)

where UH constitutes an element of H, and C ≡ C(π/2) is the equator of the sphere

in figure 3(a). This is the general condition that encodes the non-trivial topology of the
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singular non-abelian monopole. As in the abelian case, this non-trivial topology is classified

by the first homotopy group of the electric gauge group π1(G), which follows directly from

the fact that π1(G) characterises the different ways in which one may join the points A

and B in figure 3(b) to form a closed curve. As an example, we may take an electric group

G = G̃/K, in which case B can be related to A by any element of K, the centre of the

universal covering G̃. The relevant first homotopy group is then

π1

(
G̃/K

)
= K.

Thus for G = SU(N)/ZN , we find π1(G) = ZN . The identity element corresponds to

monopole configurations that are topologically equivalent to the vacuum, and hence un-

stable. This leaves N − 1 stable monopoles, consistent with the discussion of the previous

section.

Note that eq. (3.34) reduces to eq. (3.9) for an abelian electric group G∗ = U(1). A

general element of H in then given by

UH = e2πin, n ∈ Z, (3.35)

from which eq. (3.9) follows. This can in turn be related to eq. (3.4), which is proportional

to the first Chern number that classifies the non-trivial topology of U(1) principal bundles.

For other gauge groups, however, the patching condition will not be relatable to the same

topological invariant. For example, if one replaces the gauge group U(1) with SU(N), the

first Chern number vanishes (due to tracelessness of the generators), but one can instead

classify the topology of solutions using what we may refer to as the Woodward classes of

ref. [99], as we discuss in appendix A. The relevance for the double copy is as follows.

Previous studies [86] have suggested that given characteristic classes in gauge theories may

be related to similar quantities in gravity theories, under the double copy. This creates a

puzzle, in that characteristic classes depend upon the gauge group, whereas colour infor-

mation is irrelevant for the gravity side of the double copy. Here we see that there is in fact

no problem, as it is simply not true that the double copy should apply to individual char-

acteristic classes. The appropriate quantity that classifies the “double copiable” topology

of the gauge theory solution is instead the patching condition of eq. (3.34), whose form is

independent of the gauge group. We will see in the following section that this indeed has

a gravitational counterpart.

4 Topology of the Taub-NUT solution

The Taub-NUT solution of refs. [87, 88] is a widely studied exact solution of GR, whose

gravitational field has a rotational character that does not die off at spatial infinity. As

discussed in section 2, the general Taub-NUT solution has a Schwarzschild-like mass term

M , and an additional NUT charge N , where it is the latter that gives rise to the rotational

aspect of the field. Analogies between magnetic monopoles in non-abelian gauge theories

and the Taub-NUT solution have been made many times before (see e.g. ref. [100] for a

review). However, ref. [45] formalised this by pointing out that the classical double copy
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implies an exact relationship between dyons and Taub-NUT, which is true for all values of

the radial coordinate.7 The double copy is manifest in a particular coordinate system in

(2,2) signature [92], such that the metric assumes the double Kerr-Schild form of eq. (2.5).

However, once the double copy between solutions is known, we may make a coordinate

transformation to more conventional coordinates. To this end, it is convenient to work

with the Taub-NUT line element in spherical polar coordinates,

ds2 = f(r) [dt+ 2N(cos θ − 1)dϕ]2 − f−1(r)dr2 − (r2 +N2)dΩ2, (4.1)

where

dΩ2 = dθ2 + sin2 θdϕ2 (4.2)

is the squared element of solid angle in four spacetime dimensions, and the additional

quantities are given by

f(r) =
(r − r+)(r − r−)

r2 +N2
, r± = M ±

√
M2 +N2. (4.3)

Here M and N are the Schwarzschild-like mass and NUT charge parameters of eq. (2.5)

respectively. The case of a pure NUT charge is given by the limit M → 0, in which case

eq. (4.1) reduces to

ds2 =
r2 − (κN)2

r2 + (κN)2
[dt+ 2κN(cos θ − 1)dϕ]2 − (r2 + (κN)2)

[
dr2

r2 − (κN)2
+ dΩ2

]
, (4.4)

where we have rescaled N → κN for later convenience. The metric has a coordinate

singularity at θ = π. This is the so-called Misner string [103], and is a direct analogue

of the Dirac string for a magnetic monopole. The known solution to this problem is that

one may use two different coordinate patches, obtained by splitting spatial slices into a

northern and southern hemisphere, as in figure 2. In the northern hemisphere (θ ≤ π/2),

the metric of eq. (4.4) is well-defined, and one regards t as a “northern” time coordinate

t ≡ tN . In the southern hemisphere, one may transform to a “southern” time coordinate

tN = tS + 4κNϕ, (4.5)

such that the northern and southern line elements are given by

ds2N,S =
r2 − (κN)2

r2 + (κN)2
[dtN,S + 2κN(cos θ ∓ 1)dϕ]2 − (r2 + (κN)2)

[
dr2

r2 − (κN)2
+ dΩ2

]
,

(4.6)

where the upper (lower) sign corresponds to the northern (southern) case respectively. One

sees that the southern metric is singular at θ = 0, and thus that the Misner string has been

moved into the northern hemisphere. Given that the azimuthal coordinate lies in the range

0 ≤ ϕ < 2π, eq. (4.5) (which applies on the equator on which the two coordinate patches

overlap) then implies that both tN and tS must be periodic with period

t0 = 8πκN0, (4.7)

7The Taub-NUT solution has also been used to examine the double copy of the electromagnetic duality

symmetry that operates in gauge theories [79, 101, 102].
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whereN0 is a basic unit of NUT charge. Indeed, it is known that this property is required for

the spacetime to be fully spherically symmetric [104, 105]. The full NUT charge appearing

in eq. (4.6) is then given by

N = nN0, n ∈ Z, (4.8)

where the arbitrary integer n corresponds to the fact that the transformation between tS
and tN is defined only up to an integer multiple of the time period t0.

8

From the double copy perspective, it is desirable to obtain the above periodicity condi-

tion from a procedure that makes its relationship with the gauge theory manifest. We may

carry this out as follows. First, a standard result in GR is that there is a time holonomy

upon trying to synchronise clocks around a closed contour. That is, upon traversing a

given closed loop C, the difference in time coordinate upon returning to the starting point

satisfies [106]

|∆t| =
∮
C

g0i
g00

dxi, (4.9)

where i ∈ {1, 2, 3} is a spatial index, and the lack of manifest Lorentz covariance on the

right-hand side follows from the explicit choice of the physical time coordinate on the left-

hand side. This takes a suggestive form if one considers asymptotically large distances

r →∞, such that the metrics arising from eq. (4.6) take the form

gN,Sµν = ηµν + κhN,Sµν , (4.10)

where the only non-zero components of the northern and southern gravitons are given by

hN,S0ϕ = 2N(cos θ ∓ 1), hN,Sϕϕ = 4κN2(cos θ ∓ 1)2. (4.11)

Then the time holonomy of eq. (4.9) can be written purely in terms of the graviton field, as

|∆t| = κ

∮
C
h0idx

i. (4.12)

Let us now consider the family of curves C(θ) of figure 3(a), consisting of circles on the

2-sphere at spatial infinity. One may associate each such curve with a value of the time

holonomy in eq. (4.12), which from eqs. (4.11) yields

|∆tN,S(θ)| = κ

∮
C
hN,S0ϕ dϕ = 2πκhN,S0ϕ , (4.13)

where we have used the fact that the components {hN,S0ϕ } are independent of ϕ. The

time shifts of eq. (4.13) form a subgroup of the general group of diffeomorphisms that

act in gravity. One may thus view eq. (4.13) as forming a map from the set of curves in

figure 3(a) to the diffeomorphism group. At θ = 0, the loop C(0) is infinitely small, such

that ∆t = 0, which constitutes the identity element of the group. As θ increases, a path

is traced out in the diffeomorphism group until the equator θ = π/2 is reached. At this

8From eq. (4.7), one may either take N0 as a free parameter, in terms of which t0 is fixed, or vice versa.

This is analogous to the quantisation condition between the electric and magnetic charges in abelian gauge

theory.
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point, the graviton field jumps from its northern to its southern form. Finally, as θ → π,

the curve C(θ) becomes infinitely small again, and we are back at the identity element.

This is precisely the picture of figure 3(b), that we have previously used for elements of a

(non-)abelian gauge group. In order for the gravitons to be patched on the equator i.e. to

correspond to the same physical solution, the time holonomies arising from hNµν and hSµν
must be physically equivalent. However, substituting the explicit results of eqs. (4.11) into

eq. (4.13) yields

|∆tS(π/2)| − |∆tN (π/2)| = 8πκN. (4.14)

The only way that the time holonomies can coincide is then to impose periodicity of tN,S

with period t0 as in eq. (4.7).

There is another way to reach the same conclusion, that makes contact with Dirac’s

original argument for the quantisation of electric charge in an abelian gauge theory [107].

Reference [108] considered a gravitational analogue of the magnetic monopole, by consid-

ering the phase experienced by a non-relativistic test particle of mass m that traverses a

given loop C in space, and finding (if h00 = 0) that it is given in the weak field limit by

Φ = exp

[
iκm

∮
C
dxih0i

]
, (4.15)

which is directly related to eq. (4.12). For this phase to be well-defined on the equator

of figure 3 where the two coordinate patches overlap, one must have that the difference

in phases evaluated with the northern and southern graviton fields is a multiple of 2π,

such that

κm

∮
C
dxi
[
hN0i − hS0i

]
= 2πn, n ∈ Z. (4.16)

Substituting the results of eqs. (4.11) yields

mκN =
n

4
, (4.17)

which says that the mass m entering the phase of eq. (4.15) is quantised. Reference [108]

was unsure about what to take for this mass. However, its interpretation becomes clear

given the discussion above regarding the periodicity of the time coordinate. The mass m

refers to the energy of a static wavefunction in the presence of the NUT charge. If the time

coordinate is compact with period t0, this implies that the mass m is quantised according

to

∆m =
2π

t0
. (4.18)

Equation (4.17) implies

∆m =
1

4κN0
, (4.19)

so that combining this with eq. (4.18) yields eq. (4.7) as required.

The description of the quantisation condition in terms of the gravitational phase expe-

rienced by a test particle allows one to write down a patching condition for Taub-NUT that

is directly analogous to the gauge theory condition of eq. (3.34). First, note that the phase

around a loop defines a map from the base spacetime to the group U(1), so that the curves
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of figure 3(a) lead to the description in figure 3(b), where the latter is now interpreted as

a path in the group manifold of U(1). The requirement that the phases for the northern

and southern fields are related by a multiple of 2π can be written as

exp

[
iκm

∮
C
dxµhN0µ

]
= UH exp

[
iκm

∮
C
dxµhS0µ

]
, (4.20)

where we have used the fact that h00 = 0, and UH is an element of the group of trans-

formations that leaves the phase invariant, and which thus connects the points A and B

in figure 3(b). A general such element is written in eq. (3.35), and this description makes

clear that the topology of the Taub-NUT solution is similar to the case of an abelian gauge

theory. That is, the non-trivial topology is classified by maps from the equator at infinity

to U(1), namely by the first homotopy group of eq. (3.8). A similar conclusion was reached

by ref. [89], which formally defined the NUT charge according to the integral9

N =
κ

8π

∫∫
S
∂ih0jdx

i ∧ dxj , (4.21)

where S is the 2-sphere at spatial infinity. This can be verified by separating the field into

northern and southern parts related by the time translations of eq. (4.5), before applying

Stokes’ theorem and using the results of eqs. (4.11). The full NUT charge is given by

an integer multiple of the basic unit N0, according to eq. (4.8). Indeed, interpreting the

integrand of eq. (4.21) as a field strength, one finds that N is proportional to the first

Chern number, that specifies the non-trivial topology of a U(1) bundle [89]. The Chern

number is integer-valued, and thus amounts to n in the above construction. Furthermore,

the U(1) fibres in this case correspond to the group of time translations with a periodic

time coordinate, rather than the group of phases experienced by particles moving along a

path. However, the pictures are ultimately equivalent given that the phase experienced by

a non-relativistic particle is governed directly by the Hamiltonian, which is conjugate to

the time variable.

Above, we have seen that one may describe the pure NUT charge in gravity using one

of two descriptions, both of which are equivalent. That is, one may divide space into two

hemispheres and define the graviton field differently in each, such that the definitions are

related by a diffeomorphism. In the weak field and non-relativistic limit, one may write

a patching condition — eq. (4.20) — that is the precise analogue of its counterpart in

(abelian) gauge theory, and which characterises the non-trivial topology of the graviton

field. The ingredients we have used to formulate the patching condition of eq. (4.20) are

not new. However, they have not previously been analysed from the point of view of the

double copy. The fact that eq. (4.20) is a precise counterpart of eq. (3.34) tells us that it is

indeed possible to map global information from gauge theory to gravity under the double

copy, such that the latter becomes more than merely a local statement. Furthermore, it

should be no surprise that the patching condition on the gravity side takes an abelian-like

form, given that colour structure is stripped off upon taking the double copy. The patching

9Our definition differs slightly to that of ref. [89] due to our explicit inclusion of factors of κ.
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conditions of eqs. (3.34) and (4.20) then form an explicit realisation of figure 1, applied to

global properties of exact solutions.

It is possible to relate the gauge theory and gravity patching conditions to previous

work in the context of scattering amplitudes, which we shall do in the following section.

Before moving on, however, it is worth drawing attention to the recent study of ref. [109],

which provides an alternative way to describe the Taub-NUT solution by patching to-

gether graviton fields analogously to the Wu-Yang construction [93]. Instead of relating

the northern and southern fields by a diffeomorphism, the authors instead use a BMS dual

supertranslation [110, 111], which is defined only at asymptotic infinity, and thus not for-

mally equivalent to a diffeomorphism. They then argue that a periodic time coordinate is

no longer needed, which avoids the well-known problem that the Taub-NUT metric gives

rise to pathological closed time-like curves. There are similarities between ref. [109] and

the analysis carried out here, most notably the use of a Wu-Yang-like formulation for the

graviton patching, and also the fact that our patching condition of eq. (4.20) is defined

in the weak field limit, and thus at asymptotic infinity. However, there is a crucial differ-

ence between our ethos and that of ref. [109]: the double copy for the Taub-NUT solution

applies to the entire classical solutions [45], not just at asymptotic infinity. Furthermore,

the fact that gauge transformations on the gauge theory side of the correspondence should

be associated with diffeomorphisms on the gravity side is well-known in the double copy

literature on both exact classical solutions and scattering amplitudes. We have thus used

the traditional formulation of Taub-NUT in this paper, but stress that the relevance (or

otherwise) of ref. [109] deserves further study. It is also worth emphasising that the results

of ref. [109] are useful for the study of Taub-NUT metrics, independently of the double copy.

5 Wilson lines and the double copy

In the previous sections, we have seen that the non-trivial topology of a (non)-abelian

magnetic monopole can be written in terms of a certain patching condition — eq. (3.34)

— that involves the gauge-covariant phase experienced by a particle moving around the

equator of the 2-sphere at infinity. This corresponds to a so-called Wilson line operator, or

a Wilson loop in this case due to the closed nature of the contour. Such operators appear

in many places in the study of quantum field theory, arising whenever gauge-dependent

information must be compared at different points in spacetime. What is perhaps less well-

known is that Wilson lines have also been defined in gravity: see e.g. refs. [112–116] for (in

some cases very) early works on this subject. In recent times, gravitational Wilson lines

have been used to try to set up common languages between non-abelian gauge theories

and gravity [28–30, 117, 118], which is particularly convenient from a double copy point of

view. In this section, we point out how the results of the previous section can be expressed

in terms of Wilson lines, and how this relates to other examples of the double copy in the

literature.

Motivated by the gauge theory case, we define a gravitational Wilson line in terms of

the phase experienced by a scalar test particle in a gravitational field. In the full covariant
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theory, this must be proportional to the proper length of a given path C, so that we define

Φgrav.(C) = exp

[
im

∫
C
ds

(
gµν

dxµ

ds

dxν

ds

)1/2
]

(5.1)

where xµ(s) is a parametrisation of the curve, and m the mass of the test particle. This

expression simplifies in the weak field limit. Writing

gµν = ηµν + κhµν ,

one may expand eq. (5.1) in κ to obtain

Φgrav.(C) = exp

[
iκ

2

∫
C
ds
dxµ

ds

dxν

ds
hµν(x)

]
, (5.2)

where we have ignored an overall normalisation constant that is independent of hµν (and

that will cancel in any normalised expectation value of Wilson line operators). We have also

absorbed the mass m into the length parameter s. Equation (5.2) is the Wilson line operator

that was considered in e.g. refs. [28–30, 115, 117], where it was used to analyse properties

of scattering amplitudes.10 Here we may make contact with eq. (4.15) by taking C to be

the equator of the 2-sphere at infinity, and taking s = mt, where t is the conventional time

coordinate:

Φgrav.(C) = exp

[
iκm

2

∮
C
dt
(
h00 + 2ẋih0i + ẋiẋjhij

)]
, (5.3)

where the dot represents differentiation with respect to t. For the Taub-NUT solution

considered in the previous section, h00 = 0. Then, in the non-relativistic (small velocity)

limit, eq. (5.3) reduces to eq. (4.15) as required.

There is a very well-defined sense in which the gravitational Wilson line operator of

eq. (5.2) is a double copy of its gauge theory counterpart

Φ(C) = P exp

[
ig

∫
C
ds
dxµ

ds
TaAaµ(x)

]
, (5.4)

where Ta is a generator of the gauge group in the appropriate representation (n.b. this is

absorbed into the gauge field in eq. (3.34)), and s a parameter along the curve with the

same mass dimension as in eq. (5.2). To go from eq. (5.4) to eq. (5.2), one must replace

the coupling constant with its gravitational counterpart:

g → κ

2
(5.5)

which is precisely the BCJ prescription for scattering amplitudes [3]. Furthermore, one

must also strip off the colour generator Ta, and replace this with a second kinematic factor

representing the tangent vector to the Wilson line contour:

Ta → dxν

ds
. (5.6)

10Although we considered massive particles above, eq. (5.2) can be generalised for massless particles. In

that case, one must replace the exponent in eq. (5.1) with the action for a massless point particle, involving

an einbein (see e.g. ref. [119]).
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This mirrors the replacement of colour information by kinematics in the scattering am-

plitude double copy. Indeed, there are existing cases of the amplitude double copy that

can be entirely expressed in terms of Wilson lines, such that the underlying mechanism of

the double copy is precisely the replacements made above. This has not necessarily been

realised in the existing literature, and so it is worthwhile to briefly review these examples.

5.1 The all-order structure of infrared singularities

If one dresses an n-point scattering amplitude with virtual gluon or graviton radiation, one

encounters infrared (IR) divergences associated with the exchanged gauge bosons becoming

“soft” (i.e. having vanishing 4-momenta).11 These singularities have a universal form that

factors off from the full scattering amplitude A, which has a simple physical interpretation:

soft radiation has an infinite Compton wavelength, and thus cannot resolve the underlying

interaction that produced the n hard particles. One may thus write (see e.g. ref. [123] for

a pedagogical review)

A = H · S, (5.7)

where H is a so-called hard function that is completely finite, and S a soft function that

collects all the soft singularities. The latter is known to have an exponential form, where

calculating additional terms in the logarithm of the soft function amounts to summing up

infrared singularities to all orders in perturbation theory. The structure of the soft function

in QCD and QED is only partially known12 (see e.g. ref. [124]), and that of gravity is known

exactly. That is, it has now been well-established that the logarithm of the soft function

in gravity terminates at first order in the gravitational coupling constant [117, 121].

Reference [27] used the above properties to present all-loop order evidence for the

BCJ double copy. That is, the authors showed that one may isolate IR singularities at

any given order in perturbation theory in either QED or QCD, and double copy them to

obtain the known IR singularities of gravity. The somewhat lengthy analysis used intricate

Feynman-diagrammatic arguments, making clear how the BCJ duality between colour and

kinematics could be satisified at arbitrary loop orders, if terms outside of the soft limit

could be neglected. Furthermore, the authors noted that the IR singluarities of either

QED or QCD both mapped to the same gravitational results, thus providing an explicit

realisation of figure 1.

Here, we wish to point out that the analysis of ref. [27] would have been drastically

simpler using Wilson lines. It is known in (non)-abelian gauge theories that the soft function

can be expressed as a vacuum expectation value of Wilson line operators, whose contours

correspond to the physical trajectories

xµi = spµi

of the outgoing hard particles (see e.g. ref. [124]):

S =

〈
0

∣∣∣∣∣∏
i

Φi

∣∣∣∣∣ 0
〉
, Φi ≡ P exp

[
igTapµi

∫ ∞
0

dsAaµ

]
. (5.8)

11In (non)-abelian gauge theories, one also encounters singularities when radiation is collinear with the

external particles in the interaction, although such singularities are absent in gravity [117, 120–122].
12Interestingly, the soft function of QED is known exactly if there are no propagating fermions.
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The physics of this result is that hard particles emitting soft radiation cannot recoil, and

thus can only change by a phase. For this phase to have the right gauge covariance

properties to form part of a scattering amplitude, it can only be a Wilson line. Armed

with the gravitational Wilson line operator of eq. (5.2), we might write a similar definition

in gravity [117]:

Sgrav. =

〈
0

∣∣∣∣∣∏
i

Φgrav.,i

∣∣∣∣∣ 0
〉
, Φgrav.,i ≡ exp

[
iκ

2
pµi p

ν
i

∫ ∞
0

dshµν

]
. (5.9)

The all-order double copy of IR singularities obtained using diagrammatic arguments then

follows simply from the observations of eqs. (5.5), (5.6), namely that the Wilson line ex-

ponents themselves double copy in a precise way. Furthermore, the fact that both abelian

and non-abelian results both reproduce the same gravity result is obvious; one strips off

the colour generator Ta in eq. (5.8), so that it does not matter if one starts with a QED

or QCD Wilson line.

There is potentially a rather subtle flaw in the above argument, namely that for VEVs

of Wilson lines to double copy in arbitrary circumstances, the propagator for the graviton

must be written in a form which manifestly decouples left and right-indices. This is related

to the fact [125] that the double copy of pure gauge theory is not pure gravity, but a

theory containing a dilaton and axion (two-form) field. In any case, the axion and dilaton

do not pose a problem: both are scalar degrees of freedom in four spacetime dimensions,

and by standard power-counting arguments will not contribute to the structure of leading

IR singularities at each order in perturbation theory [27]. Going beyond the leading soft

approximation, one may indeed be sensitive to the additional matter content (see e.g. [64]

for an interesting discussion of this point).

5.2 The Regge limit

Another kinematic limit of scattering amplitudes in which all-order information is obtain-

able is the high-energy or Regge limit of 2 → 2 scattering, which can be expressed (for

massless particles) as

s� −t, s = (p1 + p2)
2, t = (p1 − p3)2, (5.10)

where we have labelled 4-momenta as in figure 4(a), and the Mandelstam invariants s

and t constitute the squared centre of mass energy and momentum transfer respectively.

In the Regge limit of eq. (5.10), the particles suffer a very small deflection owing to the

small momentum transfer. Thus, in position space, they follow approximately straight-

line trajectories, such that the outgoing particles become approximately collinear with the

incoming ones i.e.

p3 ' p1, p4 ' p2.

The lack of recoil means that the particles can only change by a phase and, using similar

arguments to the previous section, we arrive at the idea that 2 → 2 scattering in the Regge

limit can be described (in position space) by a vacuum expectation value of Wilson lines
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Figure 4. (a) Momentum labels for 2 → 2 scattering; (b) In the Regge limit, one may model the

scattering by two Wilson lines separated by a transverse impact parameter z.

separated by a transverse displacement z, where the magnitude of the latter is the impact

parameter, or distance of closest approach:

As�|t| → 〈0 |Φ(p1, 0)Φ(p2, z)| 0〉 , Φ(p, z) = P exp

[
igsp

µ

∫ ∞
−∞

dsAµ(sp+ z)

]
. (5.11)

This framework was first developed in the classic work of refs. [126, 127], which showed

that known properties of the Regge limit in QCD emerge from the Wilson line approach.

Reference [29] demonstrated that the same picture works for gravity if the QCD Wilson

lines are replaced with equivalent ones based on eq. (5.2). The Wilson line language thus

makes the calculations in QCD and gravity look essentially identical, although the physics

in each theory turns out to be very different. Furthermore, the Wilson line double copy

reproduces previous studies of the Regge limit based on diagrammatic arguments [31–34],

where the results overlap.

Above, we have seen two examples in which the Wilson line double copy replacements of

eqs. (5.5), (5.6) are directly related to the BCJ double copy for scattering amplitudes. The

fact that Wilson lines also underly our identification of global topological information for

the magnetic monopole and NUT charge suggests that they form a useful bridge, relating

different manifestations of the double copy. This also begs the question of what else can

be done with gravitational Wilson lines, an issue which certainly merits further study.

6 Conclusion

In this paper, we have examined the double copy for exact classical solutions, which is

normally expressed as a local statement relating the graviton field to products of gauge

fields. We have instead considered whether it is possible to map global properties of so-

lutions between theories, using the magnetic monopole in gauge theory as a test case. A

non-trivial global structure for monopole solutions is usually characterised by topological

invariants that depend on the field strength. However, these invariants can be different for

different gauge groups, which makes it difficult to see how to associate this information

with a unique gravity counterpart.

To clarify these issues, we first reviewed how to express a general singular monopole

solution for arbitrary gauge groups. By a suitable gauge choice, this can always be expressed

– 22 –



J
H
E
P
0
7
(
2
0
2
0
)
0
9
1

as a constant colour matrix multiplying an abelian-like monopole field, so that the double

copy to gravity is straightforward: one simply removes the colour matrix, and replaces the

monopole with a pure NUT charge, as follows from ref. [45]. This provides an explicit

realisation of figure 1 for exact classical solutions, and extends the recent SU(2) results of

ref. [85] to arbitrary gauge groups.

We then reviewed the Wu-Yang fibre bundle construction for magnetic monopoles [93],

in which one defines separate gauge fields associated with the northern and southern spatial

hemispheres. These are patched together on the equator, to create a global field that is free

of string-like singularities, but topologically non-trivial. The topology is classified by the

patching condition, which can always be expressed in terms of Wilson lines representing

the phase experienced by a particle upon being taken around the equator (eq. (3.34)).

Next, we showed that a similar construction can be applied in gravity (see also the recent

ref. [109]), using the known time translations that remove the Misner string singularity in

each coordinate patch [103], and which result in a periodic time coordinate. This treats

the NUT solution as a U(1) bundle, where one may take the fibres to correspond either to

time translations (modulo the time period), or the group of phases experienced by a non-

relativistic particle being taken around a loop. The latter description maps most cleanly

to the Aharonov-Bohm effect in magnetism [108], and the resulting patching condition can

then be expressed in terms of gravitational Wilson lines.

As we argued in section 5, the appearance of Wilson lines makes the double copy par-

ticularly natural, given that the relevant gauge theory and gravity operators are related by

simple replacements of coupling constants, and colour information by kinematics. We also

saw that previous double copy properties of scattering amplitudes had neat interpretations

in terms of Wilson lines. One of these (the Regge limit) was already known [29], but the

other (the double copy structure of IR singularities in fixed-angle scattering [27]) has not

been previously understood in this way in the literature. This strongly suggests that there

are other uses of gravitational Wilson lines in a double copy context, and that they po-

tentially have a key role to play in establishing a bridge, where appropriate, between the

double copy literature on scattering amplitudes and that relating to classical solutions.

We hope that the results of this study provide useful food for thought in widening the

remit of the double copy yet further, including non-perturbative and/or global aspects.
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A Topological classification of SU(N)/ZN bundles

In section 3.2, we reviewed how the non-trivial topology of a Dirac monopole can be

described by the first Chern class. In the case of other gauge groups, it is not necessarily
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the case that a well-known invariant characterises the non-trivial topology obtained by

patching together gauge fields in the northern and southern spatial hemispheres. However,

for SU(N) groups there is indeed a known description, which we thought worth pointing

out in this appendix. These results were first obtained by Woodward in ref. [99].

As discussed in section 3.2, we consider magnetic solutions associated with an electric

gauge group G = SU(N)/ZN , otherwise known as PU(N). More formally, we can write

the following short exact sequence relating the various groups appearing above:

ZN SU(N) PU(N) ∼= SU(N)/ZN .center quotient
(A.1)

Associated with this sequence is a corresponding exact sequence relating the following

homotopy groups:

· · · → π1
(
ZN
)
→ π1

(
SU(N)

)
→ π1

(
PU(N)

)
→ π0(ZN )→ π0

(
SU(N)

)
→ π0

(
PU(N)

)
(A.2)

from which we obtain the isomorphism:

π1
(
PU(N)

) ∼= π0(ZN ) = ZN .
(A.3)

The first homotopy group on the left-hand side is what classifies PU(N) bundles on S2 base

manifolds, as explained previously using figure 3. Such manifolds arise in our context due to

the fact that all of the magnetic monopoles we consider are singular at the origin, and thus

are defined on R3 − {0}, which is homotopic to S2. Each topologically distinct monopole

solution corresponds to a distinct fibre bundle, and from eq. (A.3), we see that there are

N topologically different monopole solutions associated with electric group PU(N) each

corresponding to a different element of the first homotopy group. However, we can also

classify the solutions using the dual description of cohomology classes, where eq. (A.2)

implies the exact sequence

· · · → H1
(
S2, SU(N)

)
→ H1

(
S2, PU(N)

)
→ H2(S2, ZN )→ H2(S2, SU(N))→ · · · (A.4)

and hence the isomorphism of cohomology groups

H1
(
S2, PU(N)

) ∼= H2(S2, ZN ) = ZN (A.5)

We refer to [ω] ∈ H2(S2, ZN ) as the 2nd Woodward class of the PU(N)-bundle, after

ref. [99]. For N = 2 we have PU(2)=SO(3) and the 2nd Woodward class reduces to the

2nd Stiefel-Whitney class. In other words, the Stiefel-Whitney class replaces the first Chern

class as the relevant characteristic class for monopoles in SU(2) gauge theory. For SU(N)

with N > 2, one must use the Woodward classes.
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