52 research outputs found

    Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second--post-Newtonian order

    Full text link
    Gravitational waves generated by inspiralling compact binaries are investigated to the second--post-Newtonian (2PN) approximation of general relativity. Using a recently developed 2PN-accurate wave generation formalism, we compute the gravitational waveform and associated energy loss rate from a binary system of point-masses moving on a quasi-circular orbit. The crucial new input is our computation of the 2PN-accurate ``source'' quadrupole moment of the binary. Tails in both the waveform and energy loss rate at infinity are explicitly computed. Gravitational radiation reaction effects on the orbital frequency and phase of the binary are deduced from the energy loss. In the limiting case of a very small mass ratio between the two bodies we recover the results obtained by black hole perturbation methods. We find that finite mass ratio effects are very significant as they increase the 2PN contribution to the phase by up to 52\%. The results of this paper should be of use when deciphering the signals observed by the future LIGO/VIRGO network of gravitational-wave detectors.Comment: 43 pages, LaTeX-ReVTeX, no figures

    Gravitational Radiation Theory and Light Propagation

    Get PDF
    The paper gives an introduction to the gravitational radiation theory of isolated sources and to the propagation properties of light rays in radiative gravitational fields. It presents a theoretical study of the generation, propagation, back-reaction, and detection of gravitational waves from astrophysical sources. After reviewing the various quadrupole-moment laws for gravitational radiation in the Newtonian approximation, we show how to incorporate post-Newtonian corrections into the source multipole moments, the radiative multipole moments at infinity, and the back-reaction potentials. We further treat the light propagation in the linearized gravitational field outside a gravitational wave emitting source. The effects of time delay, bending of light, and moving source frequency shift are presented in terms of the gravitational lens potential. Time delay results are applied in the description of the procedure of the detection of gravitational waves

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    DARYN-a distributed decision-making algorithm for railway networks: modeling and simulation

    No full text

    MEASURE+

    No full text
    • 

    corecore