630 research outputs found
Collective vs local measurements in qubit mixed state estimation
We discuss the problem of estimating a general (mixed) qubit state. We give
the optimal guess that can be inferred from any given set of measurements. For
collective measurements and for a large number of copies, we show that the
error in the estimation goes as 1/N. For local measurements we focus on the
simpler case of states lying on the equatorial plane of the Bloch sphere. We
show that standard tomographic techniques lead to an error proportional to
, while with our optimal data processing it is proportional to
.Comment: 4 pages, 1 figure, minor style changes, refs. adde
Looking into the matter of light-quark hadrons
In tackling QCD, a constructive feedback between theory and extant and
forthcoming experiments is necessary in order to place constraints on the
infrared behaviour of QCD's \beta-function, a key nonperturbative quantity in
hadron physics. The Dyson-Schwinger equations provide a tool with which to work
toward this goal. They connect confinement with dynamical chiral symmetry
breaking, both with the observable properties of hadrons, and hence provide a
means of elucidating the material content of real-world QCD. This contribution
illustrates these points via comments on: in-hadron condensates; dressed-quark
anomalous chromo- and electro-magnetic moments; the spectra of mesons and
baryons, and the critical role played by hadron-hadron interactions in
producing these spectra.Comment: 11 pages, 7 figures. Contribution to the Proceedings of "Applications
of light-cone coordinates to highly relativistic systems - LIGHTCONE 2011,"
23-27 May, 2011, Dallas. The Proceedings will be published in Few Body
System
Anisotropic London Penetration Depth and Superfluid Density in Single Crystals of Iron-based Pnictide Superconductors
In- and out-of-plane magnetic penetration depths were measured in three
iron-based pnictide superconducting systems. All studied samples of both 122
systems show a robust power-law behavior, , with the
sample-dependent exponent n=2-2.5, which is indicative of unconventional
pairing. This scenario could be possible either through scattering in a state or due to nodes in the superconducting gap. In the Nd-1111 system, the
interpretation of data may be obscured by the magnetism of rare-earth ions. The
overall anisotropy of the pnictide superconductors is small. The 1111 system is
about two times more anisotropic than the 122 system. Our data and analysis
suggest that the iron-based pnictides are complex superconductors in which a
multiband three-dimensional electronic structure and strong magnetic
fluctuations play important roles.Comment: submitted to a special issue of Physica C on superconducting
pnictide
Instability of vortex array and transitions to turbulent states in rotating helium II
We consider superfluid helium inside a container which rotates at constant
angular velocity and investigate numerically the stability of the array of
quantized vortices in the presence of an imposed axial counterflow. This
problem was studied experimentally by Swanson {\it et al.}, who reported
evidence of instabilities at increasing axial flow but were not able to explain
their nature. We find that Kelvin waves on individual vortices become unstable
and grow in amplitude, until the amplitude of the waves becomes large enough
that vortex reconnections take place and the vortex array is destabilized. The
eventual nonlinear saturation of the instability consists of a turbulent tangle
of quantized vortices which is strongly polarized. The computed results compare
well with the experiments. Finally we suggest a theoretical explanation for the
second instability which was observed at higher values of the axial flow
Masses of ground and excited-state hadrons
We present the first Dyson-Schwinger equation calculation of the light hadron
spectrum that simultaneously correlates the masses of meson and baryon ground-
and excited-states within a single framework. At the core of our analysis is a
symmetry-preserving treatment of a vector-vector contact interaction. In
comparison with relevant quantities the
root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our
results is agreement between the computed baryon masses and the bare masses
employed in modern dynamical coupled-channels models of pion-nucleon reactions.
Our analysis provides insight into numerous aspects of baryon structure; e.g.,
relationships between the nucleon and Delta masses and those of the
dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table
State sampling dependence of the Hopfield network inference
The fully connected Hopfield network is inferred based on observed
magnetizations and pairwise correlations. We present the system in the glassy
phase with low temperature and high memory load. We find that the inference
error is very sensitive to the form of state sampling. When a single state is
sampled to compute magnetizations and correlations, the inference error is
almost indistinguishable irrespective of the sampled state. However, the error
can be greatly reduced if the data is collected with state transitions. Our
result holds for different disorder samples and accounts for the previously
observed large fluctuations of inference error at low temperatures.Comment: 4 pages, 1 figure, further discussions added and relevant references
adde
Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system
We present a systematic numerical design and performance study of an ultra-broadband noncollinear optical parametric chirped pulse amplification (NOPCPA) system. Using a split-step Fourier approach, we model a three-stage amplifier system which is designed for the generation of 7 fs pulses with multi-terawatt peak intensity. The numerical results are compared with recent experimental data. Several important aspects and design parameters specific to NOPCPA are identified, and the values of these parameters required to achieve optimal working conditions are investigated. We identify and analyze wavelength-dependent gain saturation effects, which are specific to NOPCPA and have a strong influence on the parametric amplification process. © Springer-Verlag 2007
Shape Space Methods for Quantum Cosmological Triangleland
With toy modelling of conceptual aspects of quantum cosmology and the problem
of time in quantum gravity in mind, I study the classical and quantum dynamics
of the pure-shape (i.e. scale-free) triangle formed by 3 particles in 2-d. I do
so by importing techniques to the triangle model from the corresponding 4
particles in 1-d model, using the fact that both have 2-spheres for shape
spaces, though the latter has a trivial realization whilst the former has a
more involved Hopf (or Dragt) type realization. I furthermore interpret the
ensuing Dragt-type coordinates as shape quantities: a measure of
anisoscelesness, the ellipticity of the base and apex's moments of inertia, and
a quantity proportional to the area of the triangle. I promote these quantities
at the quantum level to operators whose expectation and spread are then useful
in understanding the quantum states of the system. Additionally, I tessellate
the 2-sphere by its physical interpretation as the shape space of triangles,
and then use this as a back-cloth from which to read off the interpretation of
dynamical trajectories, potentials and wavefunctions. I include applications to
timeless approaches to the problem of time and to the role of uniform states in
quantum cosmological modelling.Comment: A shorter version, as per the first stage in the refereeing process,
and containing some new reference
Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model
We study the solutions of the gap equation, the thermodynamic potential and
the chiral susceptibility in and beyond the chiral limit at finite chemical
potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation
between the chiral susceptibility and the thermodynamic potential in the NJL
model. We find that the chiral susceptibility is a quantity being able to
represent the furcation of the solutions of the gap equation and the
concavo-convexity of the thermodynamic potential in NJL model. It indicates
that the chiral susceptibility can identify the stable state and the
possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte
Perceptions of Japanese and Dutch women with early breast cancer about monitoring their quality of life
Objective Monitoring quality of life (QoL) in patients with cancer can provide insight into functional, psychological and social consequences associated with illness and its treatment. The primary objective of this study is to examine the influence of cultural factors on the communication between the patient and the health care provider and the perceived QoL in women with breast cancer in Japan and the Netherlands. Methods In Japanese and Dutch women with early breast cancer, the number, content and frequency of QoL-related issues discussed at the medical encounter were studied. Patients completed questionnaires regarding QoL and evaluation of communication with the CareNoteBook. Results The total number, frequency and content of QoL-related issues discussed differed between the two countries. Japanese women (n = 134) were significantly more reticent in discussing QoL-issues than the Dutch women (n = 70) (p < .001). Furthermore, Dutch patients perceived the CareNoteBook methodology significantly more positively than the Japanese patients (p < .001). Both groups supported the regular assessment via a CareNoteBook methodology. Conclusions Japanese women are more reluctant in expressing their problems with the illness, its treatment and patient-physician communication than Dutch women.Experimentele farmacotherapi
- âŠ