460 research outputs found
Normal and Lateral Casimir Forces between Deformed Plates
The Casimir force between macroscopic bodies depends strongly on their shape
and orientation. To study this geometry dependence in the case of two deformed
metal plates, we use a path integral quantization of the electromagnetic field
which properly treats the many-body nature of the interaction, going beyond the
commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary
deformations we provide an analytical result for the deformation induced change
in Casimir energy, which is exact to second order in the deformation amplitude.
For the specific case of sinusoidally corrugated plates, we calculate both the
normal and the lateral Casimir forces. The deformation induced change in the
Casimir interaction of a flat and a corrugated plate shows an interesting
crossover as a function of the ratio of the mean platedistance H to the
corrugation length \lambda: For \lambda \ll H we find a slower decay \sim
H^{-4}, compared to the H^{-5} behavior predicted by PWS which we show to be
valid only for \lambda \gg H. The amplitude of the lateral force between two
corrugated plates which are out of registry is shown to have a maximum at an
optimal wavelength of \lambda \approx 2.5 H. With increasing H/\lambda \gtrsim
0.3 the PWS approach becomes a progressively worse description of the lateral
force due to many-body effects. These results may be of relevance for the
design and operation of novel microelectromechanical systems (MEMS) and other
nanoscale devices.Comment: 20 pages, 5 figure
Brane Big-Bang Brought by Bulk Bubble
We propose an alternative inflationary universe scenario in the context of
Randall-Sundrum braneworld cosmology. In this new scenario the existence of
extra-dimension(s) plays an essential role. First, the brane universe is
initially in the inflationary phase driven by the effective cosmological
constant induced by small mismatch between the vacuum energy in the
5-dimensional bulk and the brane tension. This mismatch arises since the bulk
is initially in a false vacuum. Then, the false vacuum decay occurs, nucleating
a true vacuum bubble with negative energy inside the bulk. The nucleated bubble
expands in the bulk and consequently hits the brane, bringing a hot big-bang
brane universe of the Randall-Sundrum type. Here, the termination of the
inflationary phase is due to the change of the bulk vacuum energy. The bubble
kinetic energy heats up the universe. As a simple realization, we propose a
model, in which we assume an interaction between the brane and the bubble. We
derive the constraints on the model parameters taking into account the
following requirements: solving the flatness problem, no force which prohibits
the bubble from colliding with the brane, sufficiently high reheating
temperature for the standard nucleosynthesis to work, and the recovery of
Newton's law up to 1mm. We find that a fine tuning is needed in order to
satisfy the first and the second requirements simultaneously, although, the
other constraints are satisfied in a wide range of the model parameters.Comment: 20pages, 5figures, some references added, the previous manuscript has
been largely improve
Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays
Bose-Einstein correlations of both neutral and like-sign charged pion pairs
are measured in a sample of 2 million hadronic Z decays collected with the L3
detector at LEP. The analysis is performed in the four-momentum difference
range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be
smaller than that of charged pions. This result is in qualitative agreement
with the string fragmentation model
Measurement of the W+W-gamma Cross Section and Direct Limits on Anomalous Quartic Gauge Boson Couplings at LEP
The process e+e- -> W+W-gamma is analysed using the data collected with the
L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an
integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W-
candidates containing an isolated hard photon, the W+W-gamma cross section,
defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80
+/- 16 fb, consistent with the Standard Model expectation. Including the
process e+e- -> nu nu gamma gamma, limits are derived on anomalous
contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z
gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 <
a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Production of Single W Bosons at \sqrt{s}=189 GeV and Measurement of WWgamma Gauge Couplings
Single W boson production in electron-positron collisions is studied with the
L3 detector at LEP. The data sample collected at a centre-of-mass energy of
\sqrt{s} = 188.7GeV corresponds to an integrated luminosity of 176.4pb^-1.
Events with a single energetic lepton or two acoplanar hadronic jets are
selected. Within phase-space cuts, the total cross-section is measured to be
0.53 +/- 0.12 +/- 0.03 pb, consistent with the Standard Model expectation.
Including our single W boson results obtained at lower \sqrt{s}, the WWgamma
gauge couplings kappa_gamma and lambda_gamma are determined to be kappa_gamma =
0.93 +/- 0.16 +/- 0.09 and lambda_gamma = -0.31 +0.68 -0.19 +/- 0.13
Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV
A search for a Higgs boson decaying into invisible particles is performed
using the data collected at LEP by the L3 experiment at centre-of-mass energies
of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1
and 176.4 pb^-1. The observed candidates are consistent with the expectations
from Standard Model processes. In the hypothesis that the production cross
section of this Higgs boson equals the Standard Model one and the branching
ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set
at 95% confidence level
Search for Heavy Neutral and Charged Leptons in e+ e- Annihilation at LEP
A search for exotic unstable neutral and charged heavy leptons as well as for
stable charged heavy leptons is performed with the L3 detector at LEP.
Sequential, vector and mirror natures of heavy leptons are considered. No
evidence for their existence is found and lower limits on their masses are set
Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in e+e- Interactions at \sqrt{s} = 189 GeV
A search for the lightest neutral scalar and neutral pseudoscalar Higgs
bosons in the Minimal Supersymmetric Standard Model is performed using 176.4
pb^-1 of integrated luminosity collected by L3 at a center-of-mass energy of
189 GeV. No signal is observed, and the data are consistent with the expected
Standard Model background. Lower limits on the masses of the lightest neutral
scalar and pseudoscalar Higgs bosons are given as a function of tan(beta).
Lower mass limits for tan(beta)>1 are set at the 95% confidence level to be m_h
> 77.1 GeV and m_A > 77.1 GeV
Measurement of Bose-Einstein Correlations in e+e- -> W+W- at root(s)=189GeV
We investigate Bose-Einstein correlations (BEC) in W-pair production at
root(s)=189GeV using the L3 detector at LEP. We observe BEC between particles
from a single W decay in good agreement with those from a light-quark Z decay
sample. We investigate their possible existence between particles coming from
different W's. No evidence for such inter-W BEC is found
- âŠ