502 research outputs found

    Non-intrusive uncertainty quantification using reduced cubature rules

    Get PDF
    For the purpose of uncertainty quantification with collocation, a method is proposed for generating families of one-dimensional nested quadrature rules with positive weights and symmetric nodes. This is achieved through a reduction procedure: we start with a high-degree quadrature rule with positive weights and remove nodes while preserving symmetry and positivity. This is shown to be always possible, by a lemma depending primarily on Carathéodory's theorem. The resulting one-dimensional rules can be used within a Smolyak procedure to produce sparse multi-dimensional rules, but weight positivity is lost then. As a remedy, the reduction procedure is directly applied to multi-dimensional tensor-product cubature rules. This allows to produce a family of sparse cubature rules with positive weights, competitive with Smolyak rules. Finally the positivity constraint is relaxed to allow more flexibility in the removal of nodes. This gives a second family of sparse cubature rules, in which iteratively as many nodes as possible are removed. The new quadrature and cubature rules are applied to test problems from mathematics and fluid dynamics. Their performance is compared with that of the tensor-product and standard Clenshaw–Curtis Smolyak cubature rule

    Теплофизические модели слоисто-неоднородных горных массивов

    Get PDF
    Стисло розглянуто математичні моделі процесів переносу тепла в шаруватонеоднорідних гірничих масивах. Запропоновано загальний метод моделювання теплопереносу в шаруватих системах різної геометрії. Знайдено рівняння «склеювання», за допомогою якого розглянуто асимптотичні випадки.Mathematical models of heat transfer in layered inhomogeneous rock media are summarized. A general method of modeling the heat transfer in layered systems of a different geometry is proposed. A “matching” equation for different asymptotic cases has been found

    CP Violation in Hyperon Nonleptonic Decays within the Standard Model

    Get PDF
    We calculate the CP-violating asymmetries A(Lambda_-^0) and A(Xi_-^-) in nonleptonic hyperon decay within the Standard Model using the framework of heavy-baryon chiral perturbation theory (chiPT). We identify those terms that correspond to previous calculations and discover several errors in the existing literature. We present a new result for the lowest-order (in chiPT) contribution of the penguin operator to these asymmetries, as well as an estimate for the uncertainty of our result that is based on the calculation of the leading nonanalytic corrections.Comment: 21 pages, 2 figures; discussion clarified, results & conclusions unchanged, to appear in Phys. Rev.

    Elliptic and Hyperelliptic Curves: A Practical Security Analysis

    Get PDF
    Motivated by the advantages of using elliptic curves for discrete logarithm-based public-key cryptography, there is an active research area investigating the potential of using hyperelliptic curves of genus 2. For both types of curves, the best known algorithms to solve the discrete logarithm problem are generic attacks such as Pollard rho, for which it is well-known that the algorithm can be sped up when the target curve comes equipped with an efficiently computable automorphism. In this paper we incorporate all of the known optimizations (including those relating to the automorphism group) in order to perform a systematic security assessment of two elliptic curves and two hyperelliptic curves of genus 2. We use our software framework to give concrete estimates on the number of core years required to solve the discrete logarithm problem on four curves that target the 128-bit security level: on the standardized NIST CurveP-256, on a popular curve from the Barreto-Naehrig family, and on their respective analogues in genus 2. © 2014 Springer-Verlag Berlin Heidelberg

    New Physics and CP Violation in Hyperon Nonleptonic Decays

    Full text link
    The sum of the CP-violating asymmetries A(Lambda_-^0) and A(Xi_-^-) in hyperon nonleptonic decays is presently being measured by the E871 experiment. We evaluate contributions to the asymmetries induced by chromomagnetic-penguin operators, whose coefficients can be enhanced in certain models of new physics. Incorporating recent information on the strong phases in Xi->Lambda pi decay, we show that new-physics contributions to the two asymmetries can be comparable. We explore how the upcoming results of E871 may constrain the coefficients of the operators. We find that its preliminary measurement is already better than the epsilon parameter of K-Kbar mixing in bounding the parity-conserving contributions.Comment: 12 pages, 2 figure

    Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales

    Get PDF
    Aspergilli are commonly found in soil and on decaying plant material. D-xylose and L-arabinose are highly abundant components of plant biomass. They are released from polysaccharides by fungi using a set of extracellular enzymes and subsequently converted intracellularly through the pentose catabolic pathway (PCP)

    Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    Get PDF
    Background: Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. Methodology/Principal Findings: In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH5 3). A single intramuscular immunization with NDV-sH5 3 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH5 3 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH5 3 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. Conclusions/Significance: Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines expressing a soluble form of a heterologous viral membrane protein. Such vectors may be advantageous as they preclude the incorporation of heterologous membrane proteins into the viral vector particles

    Cofactorization on Graphics Processing Units

    Get PDF
    We show how the cofactorization step, a compute-intensive part of the relation collection phase of the number field sieve (NFS), can be farmed out to a graphics processing unit. Our implementation on a GTX 580 GPU, which is integrated with a state-of-the-art NFS implementation, can serve as a cryptanalytic co-processor for several Intel i7-3770K quad-core CPUs simultaneously. This allows those processors to focus on the memory-intensive sieving and results in more useful NFS-relations found in less time

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
    corecore