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For the purpose of uncertainty quantification with collocation, a method is proposed for 
generating families of one-dimensional nested quadrature rules with positive weights 
and symmetric nodes. This is achieved through a reduction procedure: we start with a 
high-degree quadrature rule with positive weights and remove nodes while preserving 
symmetry and positivity. This is shown to be always possible, by a lemma depending 
primarily on Carathéodory’s theorem. The resulting one-dimensional rules can be used 
within a Smolyak procedure to produce sparse multi-dimensional rules, but weight 
positivity is lost then. As a remedy, the reduction procedure is directly applied to multi-
dimensional tensor-product cubature rules. This allows to produce a family of sparse 
cubature rules with positive weights, competitive with Smolyak rules. Finally the positivity 
constraint is relaxed to allow more flexibility in the removal of nodes. This gives a second 
family of sparse cubature rules, in which iteratively as many nodes as possible are removed. 
The new quadrature and cubature rules are applied to test problems from mathematics 
and fluid dynamics. Their performance is compared with that of the tensor-product and 
standard Clenshaw–Curtis Smolyak cubature rule.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The problem of non-intrusive uncertainty quantification (UQ) in expensive computational models is considered, for ex-
ample computational fluid dynamics (CFD) models. Consider a model with d uncertain parameters having specified distri-
butions. The objective is to obtain statistics on the outputs of the model, while using the model only as a black box (i.e. 
non-intrusively). We wish to obtain accurate statistics with as few evaluations of the model as possible.

The canonical method is Monte Carlo (MC), with the well-known dimension independent convergence rate of O(1/
√

N), 
where N is the number of samples. For sufficiently low dimension d this can be improved to O

(
(log N)d/N

)
using Quasi 

Monte Carlo methods, see e.g. [1,2]. For d � 10 this can be significantly further improved by using methods based on 
polynomial approximation of the model output in the parameter space. This case is studied in this paper. For a sufficiently 
smooth parametrized model, spectral convergence is obtained. Stochastic Collocation (SC) [3–5] is such a method which 
uses either tensor products or sparse grids to sample the parameter space. Quadrature weights on these grids allow the 
evaluation of statistics. We mention also the hybrid techniques of Witteveen et al. [6,7], which use piecewise polynomial 
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interpolation on random MC grids. Approaches based on compressed sensing (and therefore not dependent on quadrature 
rules) have also been studied [8,9].

SC methods can be regarded as cubature rules targeted at moderate dimensional spaces. The conventional tensor-product 
cubature rule introduces a large number of nodes for moderate d. Sparse grid strategies are therefore required, e.g. a 
Smolyak sparse grid [10,11]. These in turn require nested one-dimensional quadrature rules for the optimal result, but no 
general strategy exists to create these nested quadrature rules with positive weights for arbitrary distributions. Furthermore, 
a Smolyak procedure does not guarantee that the weights of the resulting multi-dimensional rule are positive (and therefore 
is not necessarily numerically stable), even if the underlying one-dimensional rule has positive weights.

Sparse grid techniques have been studied thoroughly by various authors. For example, Garcke, Gerstner, and Griebel 
(see e.g. [12,13]) studied the generation of sparse grids, among others with improvements such as dimension dependent 
adaptivity. Narayan and Jakeman [14] studied the construction of quadrature rules as input for the Smolyak sparse grid. 
Nobile et al. [15] studied the effectiveness of sparse grids compared with MC methods. Anisotropic extensions (i.e. different 
quadrature rules in different dimensions) were also studied by Nobile et al. [16]. Pflüger [17] studied adaptive sparse grids, 
where locally the grid is refined if necessary, yielding a strategy to determine a sparse grid that depends on the specifics of 
the model.

The present paper has two major contributions. Firstly a method is introduced for constructing a nested family of one-
dimensional quadrature rules with positive weights, from any single high-order rule (with positive weights). Thus given a 
quadrature rule for a specific probability distribution, a nested family can be constructed, suitable for use in a Smolyak pro-
cedure. If the original rule is symmetric, the symmetry of the entire family is guaranteed. Secondly, in the multi-dimensional 
case a closely related operation can be performed. Starting from a tensor-product rule, nodes can be removed successively 
while maintaining positivity of all weights and symmetry of the rule. The result is a new kind of sparse grid with only 
positive weights. Because the positivity restriction is quite limiting, also the case where negative weights are permitted is 
considered. This allows to remove more nodes at each step of the reduction procedure. All resulting rules are well suited for 
UQ, as top level quadrature rules can be chosen separately for each parameter, without any concern about nesting. The new 
rules are demonstrated on the Genz test functions, two CFD test cases, and compared to the tensor-product and Smolyak 
rules.

The study is set up as follows. First, in the section hereafter the UQ problem is formulated. In the next section some 
useful well-known methods are discussed. In Section 4 the reduced quadrature rule is introduced, which is extended to 
a multi-dimensional setting in Section 5. The introduced cubature rule is compared with conventional cubature rules in 
Section 6. Firstly a mathematical comparison is made using test functions. Secondly the cubature rules are applied in UQ for 
the standard lid-driven cavity flow problem computed through a Lattice Boltzmann method with two uncertain parameters. 
To show the effectiveness in high-dimensional problems, it is finally applied to a three-dimensional aircraft aerodynamics 
problem, computed through a finite-volume Euler-flow model, considering seven uncertain parameters.

2. Uncertainty quantification

Consider a discrete computational problem for a quantity of interest

v := v
(
s(ξ)
)
,

where s :Rd → R
n is the state of some system, satisfying

R(s; ξ) = 0,

where R is typically a discretization of a continuous PDE, including initial and boundary conditions, and where n is the 
dimension of the discrete state. The quantity of interest v : Rn → R is a single quantity derived from the full state. The 
parameters ξ are d random variables, that is ξ : � → �, which are assumed to be independent and square-integrable (i.e. 
having finite variance), with respect to the probability space (�, F , P ) with � ⊂ R

d , � ⊂R
d , F ⊂ 2� , and P the probability 

measure. Although infinite dimensional, random fields can be fit into this framework after the application of a truncated 
Karhunen–Loève expansion [18,19].

The problem is now to determine the probability distribution and statistical moments of u, with u(ξ ) := v
(
s(ξ)
)
. The 

focus is on the latter, i.e. on determining

E[ul(ξ)] :=
∫
�

ul(ξ) dP (ξ), for l = 1,2, . . .

The collocation approach is to approximate this integral using a weighted combination of a finite number of samples 
{ξk}k=1,...,N ∈ � as

E[ul(ξ)] �
N∑

ul(ξk)wk, for l = 1,2, . . . ,
k=1
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where {wk}k=1,...,N ∈ R are the weights. ul(ξk) = (u(ξk))
l is determined by solving the (potentially expensive) deterministic 

discrete problem

R(s(ξk); ξk) = 0

for s(ξk), and by evaluating u(ξk).
In the remainder of this paper the term quadrature rule is used in a one-dimensional setting (i.e. d = 1) and the term 

cubature rule otherwise. All properties of cubature rules also apply to quadrature rules (but not vice versa).

3. Numerical integration – terminology and basic principles

3.1. Quadrature and cubature rules

Let P(K , d) be all d-variate polynomials of degree equal to or less than K . The degree of a cubature rule is defined as the 
number K such that all polynomials p ∈ P(K , d) are integrated exactly and at least one polynomial p ∈ P(K + 1, d) exists 
that is not integrated exactly.

We consider a set of cubature rules to be nested if the nodes of a smaller cubature rule are also nodes of all larger 
cubature rules. If a cubature rule is nested, error estimates can be naturally constructed by comparing the approximation 
on two consecutive levels. In addition to nesting, it is desirable that rules are (i) symmetric, meaning the nodes and weights 
have the same symmetry as the underlying probability distribution, and (ii) positive, meaning all weights are positive. 
Symmetric quadrature rules naturally represent the underlying distribution and are necessary in the multi-dimensional 
case to reduce the number of nodes (which is done in the second part of this paper). Quadrature rules with positive 
weights are unconditionally numerically stable if they are evaluated and yield an integration operator with norm equal 
to 1. For example Gaussian quadrature rules are positive, irrespective of the underlying distribution, and symmetric if the 
distribution is symmetric [20]. However they are not nested. The nested Clenshaw–Curtis rule is usually applied with a 
uniform distribution, in which case weights are positive [21] – but this is not true if weights are constructed for an arbitrary 
distribution.

3.2. The generalized Vandermonde-matrix

If N distinct one-dimensional quadrature nodes (denoted by {ξk}N
k=1 ⊂ R) are specified, the weights of the quadrature 

rule can be determined such that it is a rule of degree N − 1 by solving the following linear system:

N∑
k=1

ξ
j

k wk =
∫
�

ξ j dP (ξ), for all j = 0, . . . , N − 1. (3.1)

The matrix of this system is a Vandermonde-matrix, hereafter denoted by V and defined by V j,k = ξ
j

k . This system has 
a unique solution for distinct nodes. Hence the quadrature rule is unambiguously specified by the nodes only. For large N
the Vandermonde-matrix becomes ill-conditioned, such that for various quadrature rules more efficient algorithms exist to 
determine both the nodes and the weights, e.g. the algorithm of Golub and Welsch [20] can be used to determine a Gauss 
quadrature rule and Clenshaw–Curtis rules can be determined efficiently using a Fast Fourier transform [22].

Generalizing to a multi-dimensional setting, let {ξk}N
k=1 ⊂ R

d be N cubature nodes. Integration conditions result in the 
system

N∑
k=1

m j(ξk)wk =
∫
�

m j(ξ) dP (ξ), for all j = 1, . . . , N, (3.2)

where m j is the jth monomial under some ordering. We call the matrix G j,k = m j(ξk) the generalized Vandermonde-matrix. 
As is well-known G may be singular, but for tensor-product rules G is non-singular, as it can be formed by the Kronecker 
product of the Vandermonde-matrix of the quadrature rules [23]. Just as in the one-dimensional case, in general this matrix 
can become ill-conditioned for high-dimensional polynomial spaces or large N .

3.3. Smolyak cubature rules

The Smolyak procedure [10] is a method of constructing “sparse” cubature rules from a family of (typically nested) 
quadrature rules indexed by level. Rather than building the tensor product of the one-dimensional rule at the finest level in 
every direction, Smolyak builds tensor products of fine levels in some directions and coarse levels in others, and combines 
many such products in a single rule. If the one-dimensional rule is nested, these tensor products have many coincident 
nodes – reducing the total cost. The resulting set of nodes is known as a sparse grid [11].
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Fig. 1. Two-dimensional Smolyak cubature rule nodes of several quadrature rules.

A concise formula for the Smolyak rule [24] is

SK =
∑

K−d+1≤‖α‖1≤K
α∈Nd

(−1)K−‖α‖1

(
d − 1

K − ‖α‖1

) d⊗
k=1

QNαk
,

where {Nk}N
k=1 ⊂ N is an increasing sequence and QNk is an Nk-node quadrature rule. {Nk} is typically an exponentially 

growing sequence, because then the Smolyak cubature rule has a relatively high degree, which can be seen in the following 
lemma [25,11].

Lemma 1. Let {Nk} grow exponentially in k. Then S K has at least degree 2(K − d) + 1.

In this paper, all Smolyak cubature rules are generated using quadrature rule sets with the following exponentially 
growing numbers of nodes:

Nk =
{

1 if k = 1,

2k−1 + 1 otherwise.

This sequence is chosen such that the sequence of Nk nodes of the Clenshaw–Curtis quadrature rule is nested.
Smolyak rules do not have positive weights in general, but the condition number κ of the cubature rule is bounded if 

the original quadrature rule has positive weights [11]:

κ :=
∑N

k=1 |wk|∑N
k=1 wk

=
N∑

k=1

|wk| = O
(
(log N)d−1

)
. (3.3)

In Fig. 1 two-dimensional sparse grids resulting from Smolyak applied to Gauss–Legendre, Gauss–Jacobi (with α = β = 4), 
and Clenshaw–Curtis quadrature rules are plotted. Thanks to nesting, Clenshaw–Curtis rules result in less than half of the 
number of nodes of the other rules, and this benefit will improve in higher dimensions. If Gaussian rules are used, the 
weights of the original rule are certainly positive, and therefore (3.3) holds.

4. Carathéodory reduction of quadrature rules

In this section new quadrature rules are introduced based on the removal of nodes. Given an initial quadrature rule with 
positive weights, a set of nested quadrature rules with positive weights is determined by removing nodes while retaining 
symmetry. We call these new rules reduced quadrature rules and the procedure to remove nodes the reduction step. These 
rules are by construction nested and do have positive weights. The reduction step can be applied in such a way that the 
rules are also symmetric.

4.1. Reduction step

The principle of the reduction step is as follows. First, recall the linear system (3.1):
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⎛
⎜⎜⎜⎜⎜⎝

ξ0
1 ξ0

2 . . . ξ0
N

ξ1
1 ξ1

2 . . . ξ1
N

...
...

. . .
...

ξ N−2
1 ξ N−2

2 . . . ξ N−2
N

ξ N−1
1 ξ N−1

2 . . . ξ N−1
N

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
V

⎛
⎜⎜⎜⎜⎜⎝

w1
w2
...

w N−1
w N

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

∫
�

ξ0 dP (ξ)∫
�

ξ1 dP (ξ)
...∫

�
ξ N−2 dP (ξ)∫

�
ξ N−1 dP (ξ)

⎞
⎟⎟⎟⎟⎟⎠ ,

which describes an N-node quadrature rule of degree N − 1. The goal is to find a subset of N − 1 nodes that form a 
quadrature rule of degree N − 2. Such a rule can easily be determined by considering the following system:

⎛
⎜⎜⎜⎝

ξ0
1 ξ0

2 . . . ξ0
N

ξ1
1 ξ1

2 . . . ξ1
N

...
...

. . .
...

ξ N−2
1 ξ N−2

2 . . . ξ N−2
N

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
V−1

⎛
⎜⎜⎜⎜⎜⎝

w1
w2
...

w N−1
w N

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
∫
�

ξ0 dP (ξ)∫
�

ξ1 dP (ξ)
...∫

�
ξ N−2 dP (ξ)

⎞
⎟⎟⎟⎠ ,

where V−1 is the matrix V after the removal of the last row. This notation is used hereafter in a more general way: A−k
denotes matrix A after the removal of the last k rows.

Each column of V−1 is related to a node of the quadrature rule, so removing a column from the matrix above and 
solving the resulting system yields a nested quadrature rule of degree N − 2. The question remains which column can be 
removed such that the system that remains has a solution with positive elements. The answer follows from (a variant of) 
the well-known Carathéodory theorem. The constructive proof will be useful later.

Theorem 1 (Carathéodory’s theorem). Let v1, v2, . . . , vN , vN+1 be N + 1 vectors spanning an N-dimensional space. Let v =∑N+1
k=1 λkvk with λk ≥ 0. Then there exist βk ≥ 0 such that v =∑k∈I βkvk and I ⊂ {1, . . . , N + 1} with |I| ≤ N.

Proof. Because v1, . . . , vN+1 are N + 1 vectors in an N-dimensional space, they must be linearly dependent. So there are ck , 
not all equal to zero, such that

N+1∑
k=1

ckvk = 0.

So for any α ∈ R, it is true that

v =
N+1∑
k=1

λkvk − α

N+1∑
k=1

ckvk

=
N+1∑
k=1

(λk − αck)vk.

Without loss of generality, we assume that at least one ck > 0. Then the following choice is well-defined:

α = min
k=1,...,N

{
λk

ck
: ck > 0

}
=: λk0

ck0

.

Choosing βk = λk − αck , it is true that βk0 = 0 so with I = {1, 2, . . . , k0 − 1, k0 + 1, . . . , N} the following holds:

v =
∑
k∈I

βkvk. �

Carathéodory’s theorem can be interpreted as a column-removal step. First, let v be the columns of V−1. The elements ck
from the proof form a null vector of the matrix. Determining α and k0 from the proof yields that wk − αck ≥ 0 and 
wk0 − αck0 = 0, such that the node xk0 can be removed from the quadrature rule. This yields a quadrature rule of N − 1
nodes of degree N − 2 with positive weights, which was the goal.

Repeatedly applying the reduction step to an existing quadrature rule yields a set of nested quadrature rules with positive 
weights. The reduction step is however not unique in general. The null vector c contains both positive and negative elements 
(guaranteed by the fact that the first row of the matrix contains only positive values), so −c is also a null vector with both 
positive and negative elements and each null vector can be used to eliminate a different node.
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Fig. 2. Two-dimensional Smolyak cubature rule nodes of the reduced quadrature rule (shown below the sparse grids for various numbers of nodes N). All 
grids consist of 65 nodes.

This non-uniqueness imposes a choice. We suggest a heuristic greedy strategy of eliminating at each reduction step 
that node with the lowest probability based on the underlying probability density function (of the two nodes that can 
be eliminated). Nodes with high probability are retained. We call this the prior criterion. We shall see that for symmetric 
distributions and rules, this criterion does not apply (nodes have equal probability), which will be discussed in the next 
section.

The Smolyak cubature rule has been determined for several sets of reduced Gauss quadrature rules (see Fig. 2, here the 
standard normal distribution is used) using the prior criterion. If two nodes have equal probability, the node which is most 
far from the center is removed. Comparing this to the Smolyak cubature rules which were determined previously (see Fig. 1) 
yields that the number of nodes is the same as for the Clenshaw–Curtis quadrature rule, but the weights are positive (hence 
(3.3) can be used) and the location of the nodes is dependent on the distribution.

In the plots of the quadrature rules (below the sparse grids in Fig. 2) it is clearly visible that the quadrature rules are 
not symmetric but do have positive weights. We extend the reduction step such that the rules are symmetric.

4.2. Symmetry

The reduction step does not necessarily keep a symmetric quadrature rule symmetric, because nodes are generally re-
moved one-by-one. This is undesirable and does not happen if the null vector used in the procedure has the same symmetry 
as the weights, because eliminating one weight then automatically eliminates the symmetric weight.

Such a symmetric null vector always exists, as shown in the following lemma. The key notion is that to keep a sym-
metric quadrature rule symmetric two nodes have to be removed, which can be implemented by removing two rows from 
the Vandermonde-matrix (i.e. constructing V−2 instead of V−1). The proof is constructive, providing an algorithm for the 
reduction.

Lemma 2. There exists a symmetric null vector of V−2.

Proof. The principle of the proof is to (i) construct a matrix V ′−2 that encodes the symmetry property, (ii) prove that this 
matrix is singular and (iii) state a procedure to derive the null vector of this matrix.

Let {ξk}N
k=1 be the nodes of an N-node symmetric quadrature rule.

A case distinction is made. First, let N be even. Without loss of generality, we assume that ξ1 < ξ2 < · · · < ξN and that 
the quadrature rule is symmetric around 0. Then the nodes can be written as follows:
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{ξ1, ξ2, . . . , ξN } = {ξ1, ξ2, . . . , ξ N
2
,−ξ N

2
, . . . ,−ξ2,−ξ1}.

Consider the following matrix:

V ′−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ0
1 + ξ0

N ξ0
2 + ξ0

N−1 . . . ξ0
N
2

+ ξ0
N− N

2 +1

ξ1
1 + ξ1

N ξ1
2 + ξ1

N−1 . . . ξ1
N
2

+ ξ1
N− N

2 +1

ξ2
1 + ξ2

N ξ2
2 + ξ2

N−1 . . . ξ2
N
2

+ ξ2
N− N

2 +1
...

...
. . .

...

ξ N−3
1 + ξ N−3

N ξ N−3
2 + ξ N−3

N−1 . . . ξ N−3
N
2

+ ξ N−3
N− N

2 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix V ′−2 is constructed by combining columns of V−2. Each column of V−2 is used exactly once. V ′−2 is not a square 
matrix, so it is not trivial to see that a non-trivial null vector exists. However, if a null vector c′ exists, it can easily be 
transformed into a symmetric null vector of V−2 using c = (c′

1, c′
2, . . . , c′

N
2
, c′

N
2
, . . . , c′

2, c′
1)

T.

There always exists such a null vector c′ because for p odd, it is true that

ξ
p

k + ξ
p
N−k+1 = ξ

p
k + (−1)pξ

p
k = 0.

Therefore, determining a null vector of V ′−2 is equivalent to determining a null vector of the following matrix:

A−2 =

⎛
⎜⎜⎜⎜⎜⎝

2ξ0
1 2ξ0

2 . . . 2ξ0
N
2

2ξ2
1 2ξ2

2 . . . 2ξ2
N
2

...
...

. . .
...

2ξ N−4
1 2ξ N−4

2 . . . 2ξ N−4
N
2

⎞
⎟⎟⎟⎟⎟⎠ .

Here, the rows of V−2 consisting of zeros are removed and it is used that ξ2
1 = ξ2

N , ξ2
2 = ξ2

N−1, etc. A−2 is an 
( N

2 − 1
)×

N
2 -matrix, which is singular, hence always has a non-trivial null vector.

If N is odd, the same principle can be applied with the nodes:

{ξ1, ξ2, . . . , ξN } = {ξ1, ξ2, . . . , ξ
⌊

N
2

⌋,0,−ξ⌊ N
2

⌋, . . . ,−ξ1}.

Therefore, after constructing V ′−2 a null vector needs to be determined of the following matrix:

A−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2ξ0
1 2ξ0

2 . . . 2ξ0⌊
N
2

⌋ 1

2ξ2
1 2ξ2

2 . . . 2ξ2⌊
N
2

⌋ 0

...
...

. . .
...

...

2ξ N−3
1 2ξ N−3

2 . . . 2ξ N−3⌊
N
2

⌋ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case, A−2 is an 
⌊ N

2

⌋× (
⌊ N

2

⌋+ 1)-matrix, which is again singular.
Concluding, in both cases (N odd or even) there exists a symmetric null vector of V−2, that can be constructed using a 

null vector of matrix A−2. �
The previous lemma leads to the following main theorem about reduced symmetric quadrature rules with positive 

weights. Note that it is important to remove two nodes each time in both cases (N odd or even), because only then it 
is possible to start with a quadrature rule of odd length and iteratively remove nodes until a quadrature rule of only the 
middle node is obtained.

Theorem 2. Let {ξ1, . . . , ξN } form an N-node symmetric quadrature rule with positive weights of degree N − 1. Then there exist ξi and 
ξ j with i �= j such that {ξ1, . . . , ξN } \ {ξi, ξ j} forms an (N − 2)-node symmetric quadrature rule with positive weights of degree N − 3.

Proof. The proof follows directly from Lemma 2. Let A−2 as in Lemma 2 be given and let c be a null vector of A−2. There 
are two cases:

• If N is even: both c and −c yield the removal of two nodes in the reduction step.
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Algorithm 1 Determining the reduced quadrature rule.
Input: Quadrature rule nodes {ξ1, ξ2, . . . , ξN } and weights {w1, w2, . . . , w N } of degree N − 1
Output: Non-negative weights {w∗

1, w∗
2, . . . , w∗

N } having either two weights equal to 0 if the original quadrature rule is symmetric or one weight equal to 
0 otherwise. Using these weights, the quadrature rule has either degree N − 3 or N − 2 respectively.

1: if quadrature rule {ξ1, ξ2, . . . , ξN } is symmetric then
2: Construct A−2 from Lemma 2
3: Determine a null vector c∗ of A−2

4: Using c∗ , construct a symmetric null vector c of the matrix V−2, where V is the Vandermonde-matrix.
5: else
6: Construct the matrix V−1, where V is the Vandermonde-matrix.
7: Determine a null vector c of V−1

8: end if
9: α(1) ← mink=1,...,N

{
wk
ck

: ck > 0
}

10: α(2) ← maxk=1,...,N

{
− wk

ck
: ck < 0

}
11: w(1)

k ← wk − α(1)ck and w(2)

k ← wk + α(2)ck for k = 1, . . . , N .

12: N(1)
Z ← # 

{
w(1)

k = 0 | k = 1, . . . , N
}

13: N(2)
Z ← # 

{
w(2)

k = 0 | k = 1, . . . , N
}

14: if N(1)
Z = 1 and N(2)

Z = 2 then

15: return {w(2)

k }
16: else if N(2)

Z = 1 and N(1)
Z = 2 then

17: return {w(1)

k }
18: else
19: Here, a selection criterion can be applied:
20: return either {w(1)

k } or {w(2)

k }
21: end if

• If N is odd: it is possible that either c or −c yields the removal of the middle node, which would result in the removal 
of just one node. However, either c or −c yields the removal of two nodes.

In both cases, pick i = k0 and j = N − k0 + 1, where k0 is from the proof of Carathéodory’s theorem. �
From this theorem and the case distinction between quadrature rules of even and odd length, an algorithm can be 

formulated that generates the nested quadrature rule keeping weights positive and a symmetric quadrature rule symmetric 
(see Algorithm 1). Although the matrices V−1 and A−2 can become ill-conditioned for large N , we did not observe any 
numerical issues in determining null vectors of these matrices for N up to 210.

Using this algorithm, symmetric reduced quadrature rules can be generated using the prior criterion. The resulting 
Smolyak cubature rules are therefore also symmetric (see Fig. 3 for examples). The symmetry is also clearly visible in 
the plots of the quadrature rules.

5. Reduced cubature rules

In the previous section, a procedure has been outlined to generate a set of symmetric and nested quadrature rules with 
positive weights. Exactly the same principles can be applied to cubature rules, i.e. in a multi-dimensional setting.

The set-up is the same as in the previous section. First, the reduction step is introduced ignoring symmetry. This 
extension is straightforward. Then symmetries in multi-dimensional spaces are studied and a similar theory as in the one-
dimensional case is developed regarding the symmetry of nested cubature rules.

5.1. Multi-dimensional reduction step

Let {ξ1, . . . , ξ N} and {w1, . . . , w N} be N cubature nodes and positive weights in a d-dimensional space forming a cuba-
ture rule of degree K , with N = dimP(K , d). Let G be the N × N generalized Vandermonde-matrix, as introduced previously 
(see (3.2)). The goal is to determine a subset of nodes that forms a cubature rule of degree K − 1, with positive weights. 
Such a cubature rule has a generalized Vandermonde-matrix of size dimP(K − 1, d) × dimP(K − 1, d).

The one-dimensional reduction step can be easily generalized to determine this nested cubature rule as follows. First, let 
G be the generalized Vandermonde matrix again. Then G−C with C = dimP(K , d) − dimP(K − 1, d) has a C-dimensional 
null space.1 Applying Carathéodory’s theorem iteratively to this matrix allows for the removal of C columns, which yields 
the pursued (dimP(K − 1, d))-node cubature rule with positive weights.

1 Recall that A−k is matrix A without its last k rows.
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Fig. 3. Two-dimensional Smolyak cubature rule nodes of the symmetric reduced quadrature rule (shown below the sparse grids for various numbers of 
nodes N). All sparse grids consist of 65 nodes.

Just as in the one-dimensional case, the choice of basis for the null space is not unique, and since the number of null 
vectors is larger in multiple dimensions, more freedom to select the node to be removed is available. Iteratively applying 
the prior criterion is again an option, and will again result in loss of symmetry.

In multi-dimensional spaces, a symmetric K -degree cubature rule with positive weights of dimP(K , d) nodes is not 
trivial to derive. However, a good initial cubature rule can be determined using the introduced reduction step. Starting 
with a K -degree tensor product rule, nodes can be removed from this rule until dimP(K , d) nodes are left and using this 
cubature rule, a set of nested cubature rules can be generated.

5.2. Symmetries

As in the one-dimensional case, the reduction step does not keep a symmetric cubature rule symmetric. In a multi-
dimensional space, many different types of symmetries can be considered. We consider two types of reflectional symmetry:

1. Symmetry along an axis, i.e. the plane of symmetry has the property x(k) = 0, where x(k) is a coordinate. If a cubature 
rule is symmetric in this way in all dimensions, the planes of symmetry divide the space into 2d orthants (multi-
dimensional quadrants). We call this a type-1 symmetry (see Fig. 4a for a sketch).

2. Symmetry along a plane having x(k) = x( j) , where x(k) and x( j) are two coordinates. If a cubature rule is symmetric in 
this way in all dimensions, the planes of symmetry divide the space into 2d orthants after a rotation over 1

4 π of the 
complete basis. We call this a type-2 symmetry (see Fig. 4b for a sketch).

In a tensor product cubature rule, the first symmetry occurs if the rule is generated using a symmetric quadrature rule. The 
second symmetry occurs if one quadrature rule is used multiple times in several dimensions.

To preserve symmetry after the removal of nodes, the null vector used to remove the nodes must have the same symme-
try. As in the one-dimensional case, it is not guaranteed that such a null vector exists. Under certain conditions such a null 
vector does exist. The theory is more cumbersome than in the one-dimensional case, but has the same general structure: to 
determine a symmetric null vector of G−C , a matrix G ′ is constructed and a proof is given that a null vector of G ′ can be 
transformed into a null vector of G−C . Dependencies in the row space of G ′ finish the proof.

5.2.1. Type-1 symmetry
First we demonstrate the existence of a suitable null vector. The proof has the same structure as the proof of Lemma 2.
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Fig. 4. Visual proofs of Theorems 3 and 4. In both cases, removing a node in a colored region, which is an orthant or an orthant after 1
4 π rotation, results 

into the removal of 4 nodes in total to keep the cubature rule symmetric. The number of nodes in the colored region is denoted by N Q̄ and the number of 
independent rows in G−C determines the number of nodes that can be removed.

Lemma 3. Let {ξ1, . . . , ξ N } be a type-1 symmetric cubature rule of degree K with positive weights {w1, . . . , w N}. Let Q be an orthant 
and let N Q̄ be the number of cubature nodes in Q̄ . Then there exists a symmetric null vector of G−C if(� K

2 � + d

d

)
< N Q̄ .

Proof. See Appendix A. �
Using this lemma, a theorem can be stated about nested type-1 symmetric cubature rules with positive weights.

Theorem 3. Let {ξ1, . . . , ξ N} be a type-1 symmetric cubature rule of degree K with positive weights. Assume there are no cuba-

ture nodes shared between orthants (i.e., on the plane of symmetry). Then there exist I = 2d
(� K−1

2 �+d
d

)
indices i1, i2, . . . , i I such that 

{ξ i1
, ξ i2

, . . . , ξ i I
} forms a type-1 symmetric cubature rule of degree K − 1 with positive weights.

Proof. For a visual proof in two dimensions, see Fig. 4a. Let N Q be the number of nodes in an orthant Q . Because no nodes 
are shared between orthants, it is true that

N Q = N Q̄ ,

where N Q̄ is the number of nodes in Q̄ . Therefore the total number of nodes of the cubature rule equals N Q 2d . From 
Lemma 3 it is known that the number of nodes that can be removed from one orthant equals

N Q −
(� K−1

2 � + d

d

)
.

Hence, the number of nodes remaining in the orthant equals(� K−1
2 � + d

d

)
.

So, the total number of nodes after all removal steps is 
(� K−1

2 �+d
d

)
2d . �

If there are cubature rule nodes shared between orthants (which is almost always the case), then I is an upper bound of 
the number of nodes after a removal procedure.

5.2.2. Type-2 symmetry
Again, we state a lemma about the existence of a null vector. And again, the proof has the same structure as the proof of 

Lemma 2. However, the number of independent rows cannot be deduced explicitly anymore, such that the following lemma 
is necessary.
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Lemma 4. Let s = (s1, . . . , sd) ∈ N
d+ be a sequence. If

• ‖s‖1 ≤ B, where B > 0 and B ∈N,
• s is weakly increasing, i.e. s1 ≤ s2 ≤ . . .

then there exist 1 +∑B
l=1 pd(l) such sequences, where p is the restricted partition function.2

Lemma 5. Let {ξ1, . . . , ξ N } be a type-2 symmetric cubature rule of degree K with positive weights {w1, . . . , w N}. Let Q be an orthant 
after a rotation over 1

4π of all axes. Let N Q̄ be the number of cubature nodes in Q̄ . Then there exists a symmetric null vector of G−C if

1 +
K∑

l=1

pd(l) < N Q̄ ,

where pd(l) is the restricted partition function.

Proof. See Appendix A. �
A similar theorem can be developed about the nested cubature rule in this case.

Theorem 4. Let {ξ1, . . . , ξ N} be a type-2 symmetric cubature rule of degree K with positive weights. Assume there are no cubature 
nodes shared between orthants after a rotation over 1

4π (i.e., on the plane of symmetry). Then there exist I = 2d
(

1 +∑K−1
l=1 pd(l)

)
indices i1, i2, . . . , i I such that {ξ i1

, ξ i2
, . . . , ξ i I

} forms a type-2 symmetric cubature rule of degree K − 1 with positive weights.

Proof. Combine the proof of Theorem 3 with Lemma 5. For a visual proof in two dimensions, see Fig. 4b. �
If there are nodes shared between orthants, the theorem provides an upper bound of the number of nodes. The two lem-

mas can be combined into the following corollary. The corresponding theorem has the same structure as the two theorems 
above and is therefore omitted.

Corollary 1. Let {ξ1, . . . , ξ N } be a type-1 and type-2 symmetric cubature rule of degree K with positive weights {w1, . . . , w N}. Let 
Q 1 be an orthant and let Q 2 be an orthant after a rotation over 1

4π of all axes. Let N Q̄ 1∩Q̄ 2
=: N Q̄ be the number of nodes in both Q̄ 1

and Q̄ 2 . Then there exists a symmetric null vector of G−C if

1 +
�K/2�∑

l=1

pd(l) < N Q̄ ,

where pd(l) is the restricted partition function.

Proof. Combine Lemmas 3 and 5. �
5.3. Reduced cubature rule

With the construction above, three different reduced cubature rules can be considered:

1. The reduced cubature rule, which is a set of nested cubature rules with positive weights (but no symmetry). This set can 
be generated by repeatedly applying the reduction step and is the multi-dimensional extension of the reduced quadrature 
rule. See Fig. 5b for an example.

2. The symmetric reduced cubature rule, which is a set of nested cubature rules with positive weights, incorporating 
symmetry. This set can be generated by applying reduction steps with the theories deduced above. This is the multi-
dimensional extension of the symmetric reduced quadrature rule. See Fig. 5c for an example.

3. The negative symmetric reduced cubature rule, which is a set of nested cubature rules incorporating symmetry, but having 
possibly multiple negative weights. Although the weights are not absolutely bounded, this cubature rule yields a very 
small number of nodes. The set can be generated using the theories above trying to remove as many nodes as possible 
in each step. In the one-dimensional case, this rule was not studied because the number of nodes was not relevant. See 
Fig. 5d for an example. In the figure it is clearly visible that nodes on the boundaries of the orthants of the theorems 
above are maintained.

2 There are several definitions of the restricted partition number. Here, it is the number of compositions of the number l with at most d summands.
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Fig. 5. The discussed multi-dimensional cubature rules. All rules are of degree 9, generated using Clenshaw–Curtis quadrature rules. Initial tensor grids of 
the reduced rules are 9 × 9. Negative (neg.) and reduced (red.) is abbreviated.

The cubature rules are constructed using the multi-dimensional Vandermonde-matrix and incorporating Lemmas 3 and 5. 
Pseudo-code for this is provided in Appendix B. The algorithm stated there considers a fixed fraction of a tensor grid, whose 
number of nodes increases rapidly. Therefore determining a null vector of the corresponding generalized Vandermonde-
matrix becomes rapidly computationally expensive. The condition number of the matrix depends on the symmetries of the 
original cubature rule, i.e., the more symmetries there are, the better the condition number is. Creating a general efficient 
implementation is ongoing research.

If the number of dimensions is not too large (d � 5), then the cubature rule with positive weights has approximately the 
same number of nodes as the Smolyak sparse grid (see Fig. 5a for an example). For higher dimensions, all cubature rules 
suffer from the curse of dimensionality. The cubature rule with positive weights has the largest growth in number of nodes. 
The cubature rule with (some) negative weights has the smallest growth compared with both the Smolyak cubature rule 
and the cubature rule with (only) positive weights.

Both the cubature rules with positive weights and negative weights are based on the removal of groups of nodes. If all 
groups would be of equal size, both approaches yield an equal number of nodes. However, nodes on the plane of symmetry 
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Table 1
Number of nodes of several cubature rules for several dimensions (d) and several degrees (K ). NPositive
denotes the number of nodes of the symmetric reduced cubature rule with positive weights, NNegative
denotes the number of nodes of the negative symmetric reduced cubature rule, and NSmolyak denotes 
the number of nodes of the smallest Smolyak sparse grid of at least degree K .

d K dimP(K ,d) NSmolyak NPositive NNegative

5 5 252 61 113 43
5 7 792 241 544 384
5 9 2 002 805 1 313 325
5 11 4 368 2 473 4 096 2 016
5 13 8 568 7 245 6 005 1 607

7 5 792 113 689 99
7 7 3 432 589 1 797 325
7 9 11 440 2 471 19 717 901
7 11 31 824 9 101 28 479 2 863
7 13 77 520 30 907 158 709 28 479

10 5 3 003 221 13 461 201
10 7 19 448 1 581 20 533 1 361
10 9 92 378 8 810 1 368 449 3 705
10 11 352 716 41 445 8 284 617 12 489
10 13 1 144 066 172 055 26 598 325 38 353

15 5 15 504 481 451
15 9 1 307 504 40 001 30 861
15 13 37 442 160 1 472 697 362 063

20 5 53 130 841 801
20 9 10 015 005 120 401 98 881

25 5 142 506 1 301 1 251
25 9 52 451 256 286 001 244 101

belong to smaller groups. The cubature rule with positive weights removes nodes such that the weights remain positive and 
does not take this into account. The growth of the nodes with respect to the dimension is therefore large. In Fig. 5c it is 
clearly visible that nodes on the plane of symmetry are being removed. As opposed to this, the cubature rule with negative 
weights does not remove these nodes (see Fig. 5d). Choosing a quadrature rule of odd length results therefore in a smaller 
cubature rule as there are more groups of nodes with equal weights.

Just as for the Smolyak cubature rule, the number of nodes cannot be deduced analytically but must be tabulated (see 
Table 1). For higher dimensional cases, the results for the positive reduced cubature rule are omitted due to computational 
constraints. In the table the differences in growth are clearly visible. In the 5-dimensional case it can be observed that 
choosing a quadrature rule of odd length yields less nodes. Selecting a larger initial rule can therefore result in a smaller 
reduced rule. For the same reason there are less results for the 15-, 20-, and 25-dimensional cases: the cases where the 
original quadrature rule has even length are computationally unfeasible.

5.4. Condition number

For the Smolyak cubature rule the growth of the condition number with respect to the number of nodes is bounded 
(recall (3.3)). The reduced quadrature rule has positive weights, so the condition number equals 1 in this case. For the 
negative reduced cubature rule no such bounds exist, as far as the authors know. The condition number can be deduced 
numerically to assess its growth (see Fig. 6). The maximum degree (which is 15 here) is chosen such that (numerically) 
the sum of the weights equals 1 with a maximum error of 10−12. We are primarily interested in κ , not in the numerical 
accuracy of the procedure.

The growth of the condition number of the Smolyak rules is equal, which is evident. The Smolyak rule generated with a 
reduced quadrature rule of the prior criterion has larger condition number than the Smolyak rule generated using Clenshaw–
Curtis rules. If this is unwanted, we suggest a weight criterion where the reduced rule is selected with the smallest mutual 
difference, i.e., with the smallest maxk wk −mink wk . The condition number of the Smolyak rule generated with this reduced 
quadrature rule is significantly smaller and close to the condition number of a Clenshaw–Curtis. However, this criterion does 
not use the underlying distribution, so we do not study it further.

The condition number of the reduced negative cubature rule is smaller than that of the Smolyak rule. However, for larger 
degrees severe numerical errors occur in the algorithm to generate these rules, which is not the case for the Smolyak rule.

6. Numerical results

In this section the proposed cubature rules are applied to multiple problems and compared with tensor product and 
Smolyak cubature rule.
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Fig. 6. The condition number κ of the four cubature rules under consideration that have negative weights. All rules are 5-dimensional. Here, “red. quad” 
and “CC” stand for “reduced quadrature rule” and “Clenshaw–Curtis” respectively.

Table 2
The test functions from Genz [26]. All functions are from a certain in-
tegrand family and depend on the parameters a = (a1, . . . ,aN )T and u =
(u1, . . . , uN )T. The parameter u is a parameter that does not affect the dif-
ficulty of the integral. The parameter a determines the degree to which the 
family attribute is present.

Integrand family Attribute

f1(x) = cos
(
2πu1 +∑n

i=1 ai xi
)

Oscillatory

f2(x) =∏n
i=1

(
a−2

i + (xi − ui)
2
)−1

Product peak

f3(x) = (1 +∑n
i=1 ai xi

)−(n+1) Corner peak

f4(x) = exp
(−∑n

i=1 a2
i (xi − ui)

2
)

Gaussian

f5(x) = exp
(−∑n

i=1 ai |xi − ui |
)

C0 function

f6(x) =
{

0 if x1 > u1 or x2 > u2

exp
(∑n

i=1 ai xi
)

otherwise
Discontinuous

This section is built as follows: in the first sub-section the cubature rules will be used to integrate the Genz test func-
tions. These functions are designed for testing cubature rules. The second and third sub-section contain applications of 
the cubature rules to two UQ cases. In the second sub-section the standard lid-driven cavity flow problem with uncertain 
boundary conditions and material properties will be studied, using a Lattice Boltzmann method to compute the flow. In 
the final sub-section the main advantage of allowing negative weights is shown, i.e. high accuracy for a moderately high-
dimensional problem. An aircraft aerodynamics test case is considered with seven uncertain parameters, using the Euler 
equations of gas dynamics and a finite-volume discretization of these to compute the corresponding aircraft aerodynamics. 
Because the conventional methods require a large number of simulations, only the results of the reduced cubature rule with 
negative weights are discussed in this case.

6.1. Genz test functions

6.1.1. Uniform distribution
To test the quality of cubature rules, several functions have been developed by Genz [26]. Each function has a different 

specific property or attribute, of which the effect can be enlarged by a parameter a. A shape parameter u can be used to 
transform the function without changing the property (see Table 2 for all functions and their relevant attributes). For all 
functions the exact value of the integral can be determined [27].

Reducing a cubature rule only maintains the polynomial accuracy, which requires sufficient smoothness of the integrand. 
The first four Genz functions are in C∞([0,1]d), while the fifth is in C0([0,1]d), and the sixth is only piecewise continuous. 
Hence a priori we expect spectral convergence for the first four functions and poor convergence for the fifth and sixth, 
independent of the particular rule.
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To obtain meaningful, instructive results the coefficients a and u are chosen randomly, with each component from similar 
uniform distributions, subject to the constraints ‖a‖2 = 2.5 and ‖u‖2 = 1. Moreover, each component of both a and u is 
positive. The integration error is determined with respect to the exact solution, and averaged over 100 runs.

Convergence plots for all methods and all Genz functions are depicted in Fig. 7. The multi-dimensional reduced rules 
are initiated using tensor products of Gaussian quadrature rules and the reduction procedure is only applied once to 
keep numerical artifacts small. The Smolyak procedure is applied twice using Clenshaw–Curtis quadrature rules or reduced 
quadrature rules using a fine Clenshaw–Curtis rule as initial rule. The results can be divided into three classes that exhibit 
different behaviors: (i) f1, f2, f4, (ii) f3, and (iii) f5, f6.

Class (i) is formed by smooth results, which show almost spectral convergence for all methods. Both symmetric reduced 
rules consistently outperform the tensor product, and negative symmetric reduced rules also consistently outperform both 
Smolyak rules. No significant difference exists between the two Smolyak rules.

Class (ii) is an exception, most likely caused by the concentration of mass at one corner of the integration domain. Both 
Smolyak and reduced (negative weights) rules remove nodes at corners, and thereby poorly approximate the most important 
region of the integrand. The reduced quadrature rule keeps some nodes at the corner up to small levels, so therefore the 
Smolyak rule with reduced rules performs slightly better. The tensor and reduced (positive weights) rules do have nodes 
there, which makes the error much smaller.

For class (iii) the integrands lack sufficient smoothness for polynomial approximations to be stable. As expected, spectral 
convergence is not evident, but some limited linear convergence is visible. In both cases Smolyak rules acquit themselves 
well compared to all other methods.

In summary the proposed reduced rules are empirically converging at the level of Smolyak or better, given sufficient 
smoothness in the integrand.

6.1.2. Non-uniform distribution
The reduced cubature rule can be determined for any distribution whose moments can be evaluated. Therefore we assess 

the convergence of the rules using a β(10, 10)-distribution, a highly non-uniform distribution. The Smolyak cubature rule 
with Clenshaw–Curtis quadrature rules is not considered anymore. We only examine the results of f1, f2, and f4, i.e., the 
cases where convergence was observed.

The results are created in a similar way as in the uniform case, i.e., the coefficients a and u are chosen randomly subject 
to the constraints ‖a‖2 = 2.5 and ‖u‖2 = 1. The integration error is determined with respect to a reference value, calculated 
using a tensor grid of 305 nodes created with Gaussian quadrature rules. Convergence plots are depicted in Fig. 8.

In comparison with the previous results we see better convergence of f1 for all cubature rules. This is due to the 
β(10, 10)-distribution, which damps the oscillations of the function under consideration. Moreover it is clearly visible that 
an approximate value of the integral is used here.

f2 and f4 show similar results: in both cases the reduced rule with negative weights shows the best results. The dif-
ferences are larger in this case, which is due to the β(10, 10)-distribution that introduces many small weights in the 
initial quadrature and cubature rule. These weights are prone to removal in both the negative and positive reduction algo-
rithm.

6.1.3. Dimension dependence
All integrals so far have been determined using 5-dimensional rules. To quantify the performance of rules depending on 

the dimension, the integration error is studied for varying dimension.
The results are again created in a similar way as in the previous case, i.e. using the random coefficients and averaging the 

result. The uniform distribution is reconsidered, such that an exact value of the integral is known. We again limit ourselves 
to f1, f2, and f4. All cubature rules are generated such that they are of degree 9. The number of nodes is not taken into 
account here (but can be found in Table 1). The integration errors up to 10 dimensions are plotted in Fig. 9.

The oscillatory function f1 and the Gaussian function do not become more difficult to integrate in higher dimensions, 
as the Taylor expansions are comparable to the one-dimensional case. However, the mass of the product peak of f2 be-
comes smaller as the dimension increases, which makes the integral easier to evaluate numerically, as integrating the 
peak accurately becomes of less importance. This is also reflected in the results. The tensor product rule shows excel-
lent results for both functions, which is due to the exact integration of more polynomials in comparison to the other 
rules.

The positive reduced cubature rule shows the smallest growth compared to the other rules (excluding the tensor rule). 
This is due to the positive weights, that yield a condition number equal to 1.

The negative reduced cubature rule and the two Smolyak rules show similar growth. Although the negative reduced rule 
does not reduce or increase the integration error, it does need much less nodes to obtain this error compared with both 
Smolyak rules (see Table 1).

In summary, the tensor grid yields the largest cubature rule and shows the smallest error. The reduced positive rule needs 
less nodes, but yields a larger error. The two Smolyak rules and the reduced negative rule have approximately equivalent 
error, but the reduced negative rule yields a much smaller grid.
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Fig. 7. The accuracy of several cubature rules versus the number of nodes that are in the cubature rule. All integrals are 5-dimensional. Here, “red. quad” 
and “CC” stand for “reduced quadrature rule” and “Clenshaw–Curtis” respectively.
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Fig. 8. The accuracy of several cubature rules versus the number of nodes that are in the cubature rule. All integrals are 5-dimensional, the distribution 
under consideration is β(10, 10).

6.2. Lid-driven cavity flow test case, using a Lattice Boltzmann method

6.2.1. Problem description
The standard lid-driven cavity flow (e.g. [28]) is considered with two uncertain flow parameters, and four UQ methods 

are compared, namely MC, SC with a Smolyak sparse grid, and SC with the two new reduced cubature rules. A sketch of 
the geometry and the imposed boundary conditions is given in Fig. 10. The boundary condition imposed at both singular 
corners is u = 0, where u is the fluid velocity vector.

The deterministic problem is solved using a Lattice Boltzmann method. The implementation used for the current case is a 
straightforward D2Q9 BGK-model using Zou–He boundary conditions [29]. Reference data for several values of the Reynolds 
number can be found in Ghia et al. [28]. The results from the Lattice Boltzmann implementation compare well with the 
data provided (see Fig. 11).

Two uncertain parameters are specified (see Table 3). Both parameters have a β(a, b)-distribution, with probability den-
sity function

p(x;a,b) ∝ xa−1(1 − x)b−1 for 0 ≤ x ≤ 1.

The ranges are chosen such that the Reynolds number based on the lid velocity is between 10 and 400 (see Fig. 12 for the 
solutions of the two extreme cases).
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Fig. 9. The accuracy of the cubature rules under consideration versus the dimension. All cubature rules are of degree 9 and have minimal number of nodes.

Fig. 10. The geometry and boundary conditions of the lid-driven cavity flow.
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Fig. 11. The u-component of the flow velocity along the vertical line through the geometrical center of the cavity.

Table 3
Uncertain parameters and their distribution as considered for the lid-driven 
cavity flow problem.

Parameter Distribution

ulid (speed of the lid) β(3,3) with range (0.5,1.5)

ν (viscosity) β(4,4) with range (0.0038,0.05)

Fig. 12. Stream lines of the lid-driven cavity flow for the two extreme cases considered in the UQ problem.

6.2.2. Results
To evaluate the accuracy of the methods we consider the u-component of the fluid velocity everywhere in the domain. 

A reference mean solution is obtained using a fine tensor product rule of 65 × 65 Gaussian nodes in the parameter space, 
resulting in a reference mean solution ū∗ , depicted in Fig. 13 (the tensor grid is plotted in Fig. 14d).

UQ is applied with four different methods:

1. MC using random samples;
2. SC with a Smolyak sparse grid created with positive symmetric reduced Gauss–Jacobi quadrature rules, see Fig. 14c;
3. SC with the symmetric reduced rule initiated with a tensor grid with positive weights, see Fig. 14a;
4. SC with the negative symmetric reduced rule, see Fig. 14b.
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Fig. 13. Left: stream lines of the mean flow of the lid-driven cavity flow. Right: mean velocity component u at x = 1
2 with 2σ (“2 times standard deviation”) 

ranges.

Fig. 14. The grids used for UQ in the Lattice Boltzmann test case. All grids (except the tensor product grid) are of degree 13.
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Fig. 15. The 2-norm error of the Lattice Boltzmann test case using the discussed cubature rules for varying numbers of nodes.

Fig. 16. The geometry of the twin-engine utility aircraft without rotor blades.

The number of nodes is chosen in such a way that the degree of the resulting rule equals 13. For the Smolyak cubature 
rule, this can be achieved by choosing K = 8, because then 2(K − d) + 1 = 13 (see Lemma 1). The initial quadrature rule is 
chosen such that it is the finest quadrature rule used by the Smolyak procedure. For the reduced cubature rules, the initial 
cubature rule is a 13 × 13 tensor grid of Gaussian quadrature rules. All grids (except the MC nodes) are shown in Fig. 14.

For a measure of accuracy we take the L2-norm of the difference between the predicted mean velocity field ū(N) and 
the reference mean field ū∗ , where N is the number of nodes, i.e.

ε(N) := ‖ū(N) − ū∗‖2.

The convergence is shown in Fig. 15. The O(1/
√

N) convergence of MC is already becoming apparent. The polynomial-
based methods seem to show spectral convergence, suggesting that the response is smooth with respect to the parameters, 
as might be expected from physical considerations. Of the polynomial methods, the Smolyak rule and symmetric reduced 
rule perform approximately the same. The negative symmetric reduced rule performs poorly. The authors attribute this to 
the low dimension of the problem; we have seen the benefits of allowing negative weights primarily in five and more 
dimensions. In low-dimensional cases the difference in the number of nodes is too small to overcome the large absolute 
differences in weights (see the color bar in Fig. 14b).

6.3. Aircraft aerodynamics test case, using the Euler equations and a finite-volume method

6.3.1. Problem description
To show the performance the reduced cubature rule with negative weights (i.e. high accuracy with a relatively small 

number of nodes) we consider an aircraft aerodynamics test case with seven uncertain parameters. Only the reduced cuba-
ture rule with negative weights is used as the other cubature rules require too many nodes.

The geometry of the airplane is based on a sample airplane geometry of the program sumo [30], the so-called “twin-
engine utility aircraft” (see Fig. 16).

As flow model we consider the Euler equations of gas dynamics. The Euler-flow problem is solved using the second-order 
accurate finite-volume code SU2 [31]. The tools sumo and TetGen are used for mesh generation [32]. Besides modeling 
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Fig. 17. An example solution of the pressure coefficient at the wetted surface of the airplane. The uncertain inputs are fixed at their respective expected 
values.

Table 4
Uncertain parameters and their distribution as considered for the aircraft aerodynamics test case.

Parameter Distribution

Leading edge radius N with 5% standard deviation
Maximum camber as percentage of the chord N with 5% standard deviation
Distance of maximum camber from leading edge N with 5% standard deviation

Angle of incidence β(4,4) with range 2.31◦ ± 5%
Side-slip angle β(4,4) with range 0◦ ± 0.5◦
Mach number β(4,4) with range 0.72 ± 5%
Free-stream pressure β(4,4) with range 101 325 N/m2 ± 5%

Table 5
The first four non-central moments determined either using the cubature rule directly on the results (without hat) or using 
a high-degree cubature rule on the least-squares estimation (with hat). Empty places are values smaller than 10−5.

# cl ĉl cd ĉd csf ĉsf

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.3640 0.3645 0.0226 0.0228 −0.0015 −0.0002
2 0.1326 0.1330 0.0005 0.0005
3 0.0483 0.0485
4 0.0176 0.0177

the surfaces, sumo creates surface meshes, which are used as input for TetGen which generates the volume meshes with 
a spherical far field boundary. See Fig. 17 for an example solution.

Of the seven uncertain parameters, three are geometrical and assumed to be normally distributed. The mean is the base 
geometry value and the standard deviation is defined to be 5%. Four uncertain operational parameters are considered in 
addition, all modeled as β(4, 4) variables. See Table 4 for details.

The geometrical uncertain parameters are specifically chosen such that the 4-digit NACA airfoil series can be used to 
parameterize them. The three parameters of the NACA series are essentially these parameters. The base geometry, which 
defines the mean of the distributions of these parameters, is that of the NACA2412 airfoil.

6.3.2. Results
A reduced tensor cubature rule with negative weights of degree 9 is generated, which yields a cubature rule of 1,293 

nodes. A Smolyak sparse grid of the same degree consists of 2,465 nodes. If a tensor grid is used, then 78,125 simulations 
are necessary (if Gaussian rules are used). The reduced cubature rule with positive weights consists of 8,713 nodes in 
this case. This example shows that if time is an issue, allowing negative weights can indeed reduce the number of nodes 
significantly.

The lift, drag, and side-force coefficients are scalars obtained by integration over the wetted surface. Their moments are 
listed in Table 5 together with estimations based on least-squares regression. The degree of the polynomial fitted using 
least-squares is 5, which is the maximum number possible to keep the system determined, i.e.

dimP(5,7) < 1,293 < dimP(6,7).
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Fig. 18. The first four central moments of the pressure coefficient at the wetted surface of the aircraft. Of the kth moment the kth root is taken such that 
the units are equal.

Although the cubature rule has negative weights the variance is non-negative and the values are close to the least-squares 
estimates. Moreover, the order of magnitude of the lower-order moments seems physically reasonable (although no refer-
ence data is available for this case).

We calculate moments of the pressure coefficient over the entire surface, and plot them in Fig. 18. Here, the four 
β-distributed uncertain parameters are taken into account, because geometrical uncertainties cannot be plotted. The mean 
looks very much like a typical pressure distribution. The variance (which is non-negative at all nodes on the geometry) 
highlights the location of the shocks, for which a small change in location leads to a large change in the pressure distri-
bution. This result is consistent with UQ analyses of airfoil flows with shocks [33]. The higher-order moments (which have 
shown convergence due to the removal of the three geometrical uncertainties) are also large near the shock, indicating that 
it is unlikely that the resulting distribution is Gaussian.

7. Conclusion

Non-intrusive uncertainty quantification was studied using stochastic collocation methods. Three important properties 
are relevant for quadrature rules and cubature rules if they are used in stochastic collocation: nesting, positive weights, and 
symmetry if the original distribution is symmetric. Existing quadrature rules and cubature rules do not have these three 
properties. The Clenshaw–Curtis quadrature rule is symmetric and nested, but does not have positive weights in general. 
The Gauss quadrature rule is symmetric and has positive weights, but is not nested.
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The introduced quadrature rule performs well using a Smolyak grid. Any positive quadrature rule can be used to generate 
a set of nested quadrature rules, which can be used as input for a Smolyak procedure. Gaussian rules are quadrature rules 
which are always positive.

The proposed cubature rule comes in three variants: one which ignores symmetry, one which ignores positive weights, 
and one that has all properties. For low-dimensional problems, the cubature rule which satisfies all three properties has 
approximately the same nodes as a Smolyak sparse grid, but has positive weights. Convergence is also approximately equal, 
which can be seen in the results from the Genz test functions and the lid-driven cavity flow. If the uncertainty quantification 
problem is high-dimensional and computational efficiency is important, the positivity constraint can be relaxed to remove 
more nodes. The symmetric reduced cubature rule with possibly some negative weights yields less nodes than Smolyak grids 
and the reduced cubature rule with positive weights. In our example, higher-order moments remained positive, although 
the cubature rule has negative weights. This can become an issue though in applications where the response surface is more 
complex.

Although the cubature rules are nested, it is also important to note that the initial cubature rule still influences the 
result. If the initial cubature rule is too small, no general strategy exists to add nodes to the cubature rule and create a 
larger one, having the three properties. This is an option for further research.

Appendix A. Proofs of Lemmas 3 and 5

A.1. Proof of Lemma 3

Lemma. Let {ξ1, . . . , ξ N } be a type-1 symmetric cubature rule of degree K with positive weights {w1, . . . , w N}. Let Q be an orthant 
and let N Q̄ be the number of cubature nodes in Q̄ . Then there exists a symmetric null vector of G−C if

(� K
2 � + d

d

)
< N Q̄ .

Proof. Without loss of generality, assume that the cubature rule is symmetric around 0. First we construct a suitable 
matrix G ′ .

Let Q be an orthant. Without loss of generality, let {ξ 1, . . . , ξ N Q̄
} ∈ Q̄ . Let G ′ be the generalized Vandermonde-matrix of 

the nodes

{2‖ξ1‖0ξ1, . . . ,2
‖ξ N Q̄

‖0
ξ N Q̄

},

omitting the monomials with an odd power. G ′ is a 
(� K

2 �+d
d

)× N Q̄ -matrix.
Assume that(� K

2 � + d

d

)
< N Q̄

holds. Let c′ be a null vector of G ′ . Construct vector c as follows for k = 1, . . . , N:

ck = c′
j,

where j is such that

|ξk| = (|ξ (1)

k |, |ξ (2)

k |, . . . , |ξ (d)

k |) = (|ξ (1)
j |, |ξ (2)

j |, . . . , |ξ (d)
j |) = |ξ j|

and 1 ≤ j ≤ N Q̄ . Due to the symmetry, such a j always exists. Now c is a null vector of G . To see this, let a row index i
of G be given, with row ri . A case distinction is made.

Case 1: mi only contains even powers. Let mi(ξ) = ξα . Then

ri · c =
N∑

k=1

ckmi(ξk) =
N∑

k=1

ckmi(|ξk|)

=
N∑

k=1

ck(−1)α |ξk|α =
N∑

k=1

ck|ξk|α =
N Q̄∑
j=1

c′
j2

‖ξ j‖0 |ξ j|α

= 0,

because this monomial was included in matrix G ′ .
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Case 2: mi contains an odd power. Without loss of generality, assume that the first power is odd, i.e., mi(ξ) = ξα , with 
α(1) odd. Then let I be the index set of cubature nodes with first element equal to 0, J the index set of cubature nodes 
with first element larger than 0, and K all other indices. Due to type-1 symmetry, the size of J and K is equal. Split the 
nodes along the plane of symmetry. Then

ri · c =
N∑

k=1

ckmi(ξk)

=
∑
k∈I

ckmi(ξk) +
∑
k∈ J

ckmi(ξk) +
∑
k∈K

ckmi(ξk)

= 0 +
∑
k∈ J

ckξ
α
k +
∑
k∈K

ckξ
α
k

=
∑
k∈ J

ck(ξ
(1)

k )α
(1)

(ξ
(2...d)

k )α
(2...d) +

∑
k∈K

ck(ξ
(1)

k )α
(1)

(ξ
(2...d)

k )α
(2...d)

=
∑
k∈ J

ck(ξ
(1)

k )α
(1)

(ξ
(2...d)

k )α
(2...d) +

∑
k∈ J

ck(−ξ
(1)

k )α
(1)

(ξ
(2...d)

k )α
(2...d)

=
∑
k∈ J

ck(ξ
(1)

k )α
(1)

(ξ
(2...d)

k )α
(2...d) −

∑
k∈ J

ck(ξ
(1)

k )α
(1)

(ξ
(2...d)

k )α
(2...d)

= 0. �
A.2. Proof of Lemma 5

Lemma 6. Let {ξ1, . . . , ξ N } be a type-2 symmetric cubature rule of degree K with positive weights {w1, . . . , w N}. Let Q be an orthant 
after a rotation over 1

4π of all axes. Let N Q̄ be the number of cubature nodes in Q̄ . Then there exists a symmetric null vector of G−C if

1 +
K∑

l=1

pd(l) < N Q̄ ,

where pd(l) is the restricted partition function.

Proof. Without loss of generality, assume that the cubature rule is symmetric around 0. The proof has the same structure 
as the proof of Lemma 2, combined with Lemma 6. Again, we first construct a suitable matrix G ′ .

Let Q be an orthant after 1
4 π rotation of all basis vectors. Without loss of generality, let {ξ 1, . . . , ξ N Q̄

} ∈ Q̄ . Let G ′ be 
the generalized Vandermonde-matrix of the nodes⎧⎪⎨

⎪⎩
#σ ξ1∑
k=1

σkξ1, . . . ,

#σ ξ N Q̄∑
k=1

σkξ N Q̄

⎫⎪⎬
⎪⎭ ,

where #σ ξk is the number of permutations of the elements of cubature node ξk and where σk is the kth permutation 
operator, i.e., it is a sum over all permutations of ξk . Omit all monomials ξα with a power which is not sorted. Due to 
Lemma 4, G ′ is a 

(
1 +∑K

l=1 pd(l)
)

× N Q̄ -matrix. Assume that

1 +
K∑

l=1

pd(l) < N Q̄

holds. Let c′ be a null vector of G ′ . Construct vector c as follows for k = 1, . . . , N:

ck = c′
j,

where j is such that

ξk = σ(ξ j),

for a suitable permutation σ with 1 ≤ j ≤ N Q̄ . This is well-defined because of the type-2 symmetry. Now c is a null vector 
of G . To see this, let a row index i of G be given, with row ri . Let mi(ξ ) = ξα be the respective monomial. Then:
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ri · c =
N∑

k=1

ckmi(ξk) =
N∑

k=1

ckξ
α
k .

For each ξk , there exists a permutation operator σk , such that σk(ξk) = ξ j for 1 ≤ j ≤ N Q̄ . Hence:

N∑
k=1

ckξ
α
k =

N∑
k=1

ck(σkξ jk
)α =

N Q̄∑
j=1

c′
j

#σ ξ j∑
k=1

(σkξ j)
α = 0. �

Appendix B. Algorithms for reduced cubature rule generation

The Algorithms 2–4 provided in this appendix are not yet efficient for high-dimensional cubature rules of high degree, 
and are merely given for sake of completeness. Examples of possible optimizations are the following: numerical issues can 
arise when determining the null vectors and time and memory issues can arise if the complete G−C is constructed. The first 
issue can be partially overcome by scaling all elements of the nodes onto the same interval and the second issue can be 
circumvented by constructing the matrix G−C column-wise and checking for existence of a null vector after each addition 
of a column.

Algorithm 2 Determining the reduced cubature rule.
Input: Cubature rule nodes {ξ1, ξ2, . . . , ξ N } and weights {w1, w2, . . . , w N } of degree K , with N = dimP(K , d).
Output: Non-negative weights {w∗

1, w∗
2, . . . , w∗

N } having (dimP(K − 1, d)
)

number of non-zero entries, such that the resulting quadrature rule has degree 
K − 1.

1: Construct G−C of the nodes using all monomials up to degree K − 1 (see Section 5.1)
2: Determine C null vectors c(1), c(2), . . . , c(C) of G−C

3: for i = 1, . . . , C do
4: c ← c(i)

5: α(1) ← mink=1,...,N

{
wk
ck

: ck > 0
}

6: α(2) ← maxk=1,...,N

{
− wk

ck
: ck < 0

}
7: Let k(1) and k(2) be such that α(1) = wk(1) /ck(1) and α(2) = wk(2) /ck(2)

8: w(1)

k ← wk − α(1)ck and w(2)

k ← wk + α(2)ck for k = 1, . . . , N .

9: Here, a selection criterion can be applied:
10: Pick l = 1 or 2 and let {w} ← {

w(l)
}

11: for j = i + 1, . . . , C do
12: c( j) ← c( j) − c(i)c( j)

k(l) /c(i)
k(l)

13: Now, c( j)
k(l) = 0

14: end for
15: end for
16: return {w}

Algorithm 3 Determining the symmetric reduced cubature rule.
Input: Type-1 and type-2 symmetric cubature rule nodes {ξ1, ξ2, . . . , ξ N } and weights {w1, w2, . . . , w N } for degree K , with N = dimP(K , d).

Output: Non-negative weights {w∗
1, w∗

2, . . . , w∗
N } having at most 2d

(
1 +∑�K/2�

l=1 pd(l)
)

non-zero entries, such that the resulting quadrature rule has degree 
K − 1.

1: Let G ′ be the generalized Vandermonde-matrix of the nodes (see Appendix A):⎧⎪⎨
⎪⎩2‖ξ1‖0

#σ ξ1∑
k=1

σkξ1, . . . ,2
‖ξ N Q̄

‖0

#σ ξ N Q̄∑
k=1

σkξ N Q̄

⎫⎪⎬
⎪⎭ .

2: Determine K null vectors c′ (1), c′ (2), . . . , c′ (K ) of G ′
3: Determine K symmetric null vectors c(1), . . . , c(K ) of G−C

4: Execute step 3 until 15 of Algorithm 2, with C ← K
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Algorithm 4 Determining the negative symmetric reduced cubature rule.
Input: Type-1 and type-2 symmetric cubature rule nodes {ξ1, ξ2, . . . , ξ N } and weights {w1, w2, . . . , w N } for degree K , with N = dimP(K , d).

Output: Non-negative weights {w∗
1, w∗

2, . . . , w∗
N } having at most 2d

(
1 +∑�K/2�

l=1 pd(l)
)

non-zero entries, such that the resulting quadrature rule has degree 
K − 1.

1: Let G ′ be the generalized Vandermonde-matrix of the nodes (see Appendix A):⎧⎪⎨
⎪⎩2‖ξ1‖0

#σ ξ1∑
k=1

σkξ1, . . . ,2
‖ξ N Q̄

‖0

#σ ξ N Q̄∑
k=1

σkξ N Q̄

⎫⎪⎬
⎪⎭ .

2: Determine K null vectors c′ (1), c′ (2), . . . , c′ (K ) of G ′
3: Determine K symmetric null vectors c(1), . . . , c(K ) of G−C (see Section 5.1)
4: for i = 1, . . . , K do
5: c ← c(i)

6: S K ← {k|ck �= 0}
7: γ ← maxk∈S K

{
2‖ξk‖0 #σ ξk

}
8: Let k0 be such that γ = 2‖ξk0

‖0 #σ ξk0

9: α ← wk0 /ck0

10: wk ← wk − αck for k = 1, . . . , N
11: for j = i + 1, . . . , K do
12: c( j) ← c( j) − c(i)c( j)

k0
/c(i)

k0

13: Now, c( j)
k0

= 0
14: end for
15: end for
16: return {w}

References

[1] K. Ye, Orthogonal column Latin hypercubes and their application in computer experiments, J. Am. Stat. Assoc. 93 (1998) 1430–1439, http://
dx.doi.org/10.2307/2670057.

[2] R. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numer. 7 (1998) 1–49.
[3] H. Najm, Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Annu. Rev. Fluid Mech. 41 (2009) 35–52, 

http://dx.doi.org/10.1146/annurev.fluid.010908.165248.
[4] M. Eldred, J. Burkardt, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, in: 47th AIAA 

Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, 2009, 
No. AIAA 2009-976.

[5] D. Xiu, J. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput. 27 (2005) 1118–1139, http://
dx.doi.org/10.1137/040615201.

[6] J. Witteveen, G. Iaccarino, Simplex elements stochastic collocation in higher-dimensional probability spaces, in: 51st AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, 2010, No. AIAA 2010-2924.

[7] J. Witteveen, G. Iaccarino, Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification, J. Comput. Phys. 239 
(2013) 1–21, http://dx.doi.org/10.1016/j.jcp.2012.12.030.

[8] A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, J. Comput. Phys. 230 (2011) 3015–3034, http://dx.doi.org/
10.1016/j.jcp.2011.01.002.

[9] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys. 230 (2011) 2345–2367, 
http://dx.doi.org/10.1016/j.jcp.2010.12.021.

[10] S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math. Dokl. 4 (1963) 240–243.
[11] E. Novak, K. Ritter, Simple cubature formulas with high polynomial exactness, Constr. Approx. 15 (1999) 499–522, http://dx.doi.org/10.1007/

s003659900119.
[12] J. Garcke, Sparse grids in a nutshell, in: Sparse Grids and Applications, Springer, 2013, pp. 57–80, http://dx.doi.org/10.1007/978-3-642-31703-3.
[13] T. Gerstner, M. Griebel, Numerical integration using sparse grids, Numer. Algorithms 18 (1998) 209–232, http://dx.doi.org/10.1023/A:1019129717644.
[14] A. Narayan, J. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci. Comput. 36 

(2014) A2952–A2983, http://dx.doi.org/10.1137/140966368.
[15] F. Nobile, R. Tempone, C. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. 

Anal. 46 (2008) 2309–2345, http://dx.doi.org/10.1137/060663660.
[16] F. Nobile, R. Tempone, C. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, 

SIAM J. Numer. Anal. 46 (2008) 2411–2442, http://dx.doi.org/10.1137/070680540.
[17] D. Pflüger, Spatially Adaptive Sparse Grids for High-dimensional Problems, Ph.D. thesis, Technische Universität München, 2010.
[18] R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, 1991.
[19] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010.
[20] G. Golub, J. Welsch, Calculation of Gauss quadrature rules, Math. Comput. 23 (1969) 221–230, http://dx.doi.org/10.2307/2004418.
[21] C. Clenshaw, A. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960) 197–205, http://dx.doi.org/10.1007/

BF01386223.
[22] J. Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules, BIT Numer. Math. 46 (2006) 195–202.
[23] A. Laub, Matrix Analysis for Scientists & Engineers, Cambridge University Press, 2004.
[24] G. Wasilkowski, H. Wozniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complex. 11 (1995) 1–56, http://

dx.doi.org/10.1006/jcom.1995.1001.
[25] E. Novak, K. Ritter, High dimensional integration of smooth functions over cubes, Numer. Math. 75 (1996) 79–97, http://dx.doi.org/10.1007/

s002110050231.

http://dx.doi.org/10.2307/2670057
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib4361666C6973636831393938s1
http://dx.doi.org/10.1146/annurev.fluid.010908.165248
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib456C6472656432303039s1
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib456C6472656432303039s1
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib456C6472656432303039s1
http://dx.doi.org/10.1137/040615201
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib57697474657665656E32303130s1
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib57697474657665656E32303130s1
http://dx.doi.org/10.1016/j.jcp.2012.12.030
http://dx.doi.org/10.1016/j.jcp.2011.01.002
http://dx.doi.org/10.1016/j.jcp.2010.12.021
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib536D6F6C79616B3633s1
http://dx.doi.org/10.1007/s003659900119
http://dx.doi.org/10.1007/978-3-642-31703-3
http://dx.doi.org/10.1023/A:1019129717644
http://dx.doi.org/10.1137/140966368
http://dx.doi.org/10.1137/060663660
http://dx.doi.org/10.1137/070680540
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib50666C7567657232303130s1
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib4768616E656D31393931s1
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib58697532303130s1
http://dx.doi.org/10.2307/2004418
http://dx.doi.org/10.1007/BF01386223
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib57616C64766F67656C32303036s1
http://refhub.elsevier.com/S0021-9991(16)30664-7/bib4C61756232303035s1
http://dx.doi.org/10.1006/jcom.1995.1001
http://dx.doi.org/10.1007/s002110050231
http://dx.doi.org/10.2307/2670057
http://dx.doi.org/10.1137/040615201
http://dx.doi.org/10.1016/j.jcp.2011.01.002
http://dx.doi.org/10.1007/s003659900119
http://dx.doi.org/10.1007/BF01386223
http://dx.doi.org/10.1006/jcom.1995.1001
http://dx.doi.org/10.1007/s002110050231


L.M.M. van den Bos et al. / Journal of Computational Physics 332 (2017) 418–445 445
[26] A. Genz, Testing multidimensional integration routines, in: Proc. of International Conference on Tools, Methods and Languages for Scientific and Engi-
neering Computation, Elsevier, North–Holland, 1984, pp. 81–94.

[27] T. Patterson, On the construction of a practical Ermakov–Zolotukhin multiple integrator, in: Numerical Integration, in: NATO ASI Series, vol. 203, 
Springer, 1987, pp. 269–290.

[28] U. Ghia, K. Ghia, C. Shin, High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method, J. Comput. Phys. 48 
(1982) 387–411, http://dx.doi.org/10.1016/0021-9991(82)90058-4.

[29] Q. Zou, X. He, On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model, Phys. Fluids 9 (1997) 1591–1598.
[30] D. Eller, Larosterna.com: sumo – aircraft geometry and surface modeling tool, http://www.larosterna.com/sumo.html, 2009, accessed 2016 May 09.
[31] F. Palacios, T. Economon, A. Aranake, S. Copeland, A. Lonkar, T. Lukaczyk, D. Manosalvas, K. Naik, A. Padrón, B. Tracey, A. Variyar, J. Alonso, Stanford 

University unstructured (SU2): open-source analysis and design technology for turbulent flows, in: 52nd AIAA Aerospace Sciences Meeting Including 
The New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, 2014, No. AIAA 2014-0243.

[32] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw. 41 (2015) 11, http://dx.doi.org/10.1145/2629697.
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