86 research outputs found

    Three-nucleon mechanisms in photoreactions

    Full text link
    The 12^{12}C(γ,ppn)(\gamma,ppn) reaction has been measured for Eγ_{\gamma}=150-800 MeV in the first study of this reaction in a target heavier than 3^3He. The experimental data are compared to a microscopic many body calculation. The model, which predicts that the largest contribution to the reaction arises from final state interactions following an initial pion production process, overestimates the measured cross sections and there are strong indications that the overestimate arises in this two-step process. The selection of suitable kinematic conditions strongly suppresses this two-step contribution leaving cross sections in which up to half the yield is predicted to arise from the absorption of the photon on three interacting nucleons and which agree with the model. The results indicate (γ,3N)(\gamma,3N) measurements on nuclei may be a valuable tool for obtaining information on the nuclear three-body interaction.Comment: 5 pages, 3 figure

    Double π0\pi^0 Photoproduction off the Proton at Threshold

    Get PDF
    The reaction γpπ0π0p\gamma p \to \pi^0 \pi^0 p has been measured using the TAPS BaF2_2 calorimeter at the tagged photon facility of the Mainz Microtron accelerator. Chiral perturbation theory (ChPT) predicts that close to threshold this channel is significantly enhanced compared to double pion final states with charged pions. In contrast to other reaction channels, the lower order tree terms are strongly suppressed in 2π0\pi^0 photoproduction. The consequence is the dominance of pion loops in the 2π0\pi^0 channel close to threshold - a result that opens new prospects for the test of ChPT and in particular its inherent loop terms. The present measurement is the first which is sensitive enough for a conclusive comparison with the ChPT calculation and is in agreement with its prediction. The data also show good agreement with a calculation in the unitary chiral approach.Comment: Submitted to PL

    Dependence of the 12^{12}C(γ\vec{\gamma},pd) reaction on photon linear polarisation

    Full text link
    The sensitivity of the 12^{12}C(γ,pd)(\vec{\gamma},pd) reaction to photon linear polarisation has been determined at MAMI, giving the first measurement of the reaction for a nucleus heavier than 3^{3}He. Photon asymmetries and cross sections were measured for EγE_{\gamma}=170 to 350 MeV. For EγE_{\gamma} below the Δ\Delta resonance, reactions leaving the residual 9^{9}Be near its ground state show a positive asymmetry of up to 0.3, similar to that observed for 3^{3}He suggesting a similar reaction mechanism for the two nuclei.Comment: 4 pages, 2 figure

    Ab initio many-body calculations on infinite carbon and boron-nitrogen chains

    Full text link
    In this paper we report first-principles calculations on the ground-state electronic structure of two infinite one-dimensional systems: (a) a chain of carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield results were obtained using the restricted Hartree-Fock approach, while the many-body effects were taken into account by second-order M{\o}ller-Plesset perturbation theory and the coupled-cluster approach. The calculations were performed using 6-31GG^{**} basis sets, including the d-type polarization functions. Both at the Hartree-Fock (HF) and the correlated levels we find that the infinite carbon chain exhibits bond alternation with alternating single and triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In addition, we also performed density-functional-theory-based local density approximation (LDA) calculations on the infinite carbon chain using the same basis set. Our LDA results, in contradiction to our HF and correlated results, predict a very small bond alternation. Based upon our LDA results for the carbon chain, which are in agreement with an earlier LDA calculation calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488 (1998).], we conclude that the LDA significantly underestimates Peierls distortion. This emphasizes that the inclusion of many-particle effects is very important for the correct description of Peierls distortion in one-dimensional systems.Comment: 3 figures (included). To appear in Phys. Rev.

    Uptake of gases in bundles of carbon nanotubes

    Full text link
    Model calculations are presented which predict whether or not an arbitrary gas experiences significant absorption within carbon nanotubes and/or bundles of nanotubes. The potentials used in these calculations assume a conventional form, based on a sum of two-body interactions with individual carbon atoms; the latter employ energy and distance parameters which are derived from empirical combining rules. The results confirm intuitive expectation that small atoms and molecules are absorbed within both the interstitial channels and the tubes, while large atoms and molecules are absorbed almost exclusively within the tubes.Comment: 9 pages, 12 figures, submitted to PRB Newer version (8MAR2K). There was an error in the old one (23JAN2K). Please download thi

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET results in support to ITER

    Get PDF
    corecore