173 research outputs found

    Strange matrix elements of the nucleon

    Full text link
    Results for the disconnected contributions to matrix elements of the vector current and scalar density have been obtained for the nucleon from the Wilson action at beta=6 using a stochastic estimator technique and 2000 quenched configurations. Various methods for analysis are employed and chiral extrapolations are discussed.Comment: Lattice2002(matrixel), 3 pages, 3 figure

    Solution of the differential equation (∂2∂x∂y + ax∂∂x + by∂∂y + cxy + ∂∂t) P(x, y, t) = 0 and the Bogoliubov transformation

    Get PDF
    AbstractAn eigen function expansion for the solution of the Lambropolous partial differential equation is obtained by the use of a transformation similar to the Bugolubov transformation familiar in Bose gas theory. Also the technique of normal ordering of operators is employed. The orthogonality properties of such solutions are also analysed

    Resonant nonlinear spectroscopy in strong fields

    Get PDF
    A method is presented to describe multiple resonant nonlinear spectra in the presence of strong laser fields. The Liouville equation for the d. operator of the mol. system is transformed to a time-independent linear equation system. This can be easily solved rigorously by numerical methods or, after partitioning into a strong-field part and a perturbation, the soln. can be obtained anal. by a novel perturbative approach. The results account for power broadening. Rabi splitting of signals, and power-induced extra resonances, the latter being related to the pure dephasing-induced resonances in the weak-field limit. The method can be applied to a large no. of multiple resonant nonlinear spectroscopies, esp. CARS, CSRS, coherent Rayleigh scattering and sum- or difference-frequency generation

    On the practicality of time-optimal two-qubit Hamiltonian simulation

    Get PDF
    What is the time-optimal way of using a set of control Hamiltonians to obtain a desired interaction? Vidal, Hammerer and Cirac [Phys. Rev. Lett. 88 (2002) 237902] have obtained a set of powerful results characterizing the time-optimal simulation of a two-qubit quantum gate using a fixed interaction Hamiltonian and fast local control over the individual qubits. How practically useful are these results? We prove that there are two-qubit Hamiltonians such that time-optimal simulation requires infinitely many steps of evolution, each infinitesimally small, and thus is physically impractical. A procedure is given to determine which two-qubit Hamiltonians have this property, and we show that almost all Hamiltonians do. Finally, we determine some bounds on the penalty that must be paid in the simulation time if the number of steps is fixed at a finite number, and show that the cost in simulation time is not too great.Comment: 9 pages, 2 figure

    Nucleon Axial Form Factor from Lattice QCD

    Full text link
    Results for the isovector axial form factors of the proton from a lattice QCD calculation are presented for both point-split and local currents. They are obtained on a quenched 163×2416^{3} \times 24 lattice at β=6.0\beta= 6.0 with Wilson fermions for a range of quark masses from strange to charm. We determine the finite lattice renormalization for both the local and point-split currents of heavy quarks. Results extrapolated to the chiral limit show that the q2q^2 dependence of the axial form factor agrees reasonably well with experiment. The axial coupling constant gAg_A calculated for the local and the point-split currents is about 6\% and 12\% smaller than the experimental value respectively.Comment: 8 pages, 5 figures (included in part 2), UK/93-0

    Time-ordering and a generalized Magnus expansion

    Get PDF
    Both the classical time-ordering and the Magnus expansion are well-known in the context of linear initial value problems. Motivated by the noncommutativity between time-ordering and time derivation, and related problems raised recently in statistical physics, we introduce a generalization of the Magnus expansion. Whereas the classical expansion computes the logarithm of the evolution operator of a linear differential equation, our generalization addresses the same problem, including however directly a non-trivial initial condition. As a by-product we recover a variant of the time ordering operation, known as T*-ordering. Eventually, placing our results in the general context of Rota-Baxter algebras permits us to present them in a more natural algebraic setting. It encompasses, for example, the case where one considers linear difference equations instead of linear differential equations

    Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

    Get PDF
    We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex

    Scalar field in the Bianchi I: Non commutative classical and Quantum Cosmology

    Full text link
    Using the ADM formalism in the minisuperspace, we obtain the commutative and noncommutative exact classical solutions and exact wave function to the Wheeler-DeWitt equation with an arbitrary factor ordering, for the anisotropic Bianchi type I cosmological model, coupled to a scalar field, cosmological term and barotropic perfect fluid. We introduce noncommutative scale factors, considering that all minisuperspace variables qi\rm q^i do not commute, so the symplectic structure was modified. In the classical regime, it is shown that the anisotropic parameter β±nc\rm \beta_{\pm nc} and the field ϕ\phi, for some value in the λeff\lambda_{eff} cosmological term and noncommutative θ\theta parameter, present a dynamical isotropization up to a critical cosmic time tct_{c}; after this time, the effects of isotropization in the noncommutative minisuperspace seems to disappear. In the quantum regimen, the probability density presents a new structure that corresponds to the value of the noncommutativity parameter.Comment: 17 pages, 6 figures, Acepted in IJT

    Heating and decoherence suppression using decoupling techniques

    Get PDF
    We study the application of decoupling techniques to the case of a damped vibrational mode of a chain of trapped ions, which can be used as a quantum bus in linear ion trap quantum computers. We show that vibrational heating could be efficiently suppressed using appropriate ``parity kicks''. We also show that vibrational decoherence can be suppressed by this decoupling procedure, even though this is generally more difficult because the rate at which the parity kicks have to applied increases with the effective bath temperature.Comment: 13 pages, 5 figures. Typos corrected, references adde

    The influence of nozzle geometry on corner flows in supersonic wind tunnels

    Get PDF
    In supersonic flows, the separation in streamwise corners is a significant and widely encountered problem which can not be reliably predicted with the numerical methods commonly used in industry. The few previous studies on this topic have suggested conflicting corner flow topologies. Experiments of supersonic flow are typically conducted in wind tunnels with rectangular cross-sections, which use either a symmetric (full) or asymmetric (half-liner) nozzle configuration. However, the effect of the nozzle arrangement on the corner flow itself is not known. This paper examines the influence of nozzle geometry on the corner regions of a Mach 2.5 flow using a joint experimental-computational approach. The full setup and half-liner configuration are shown to produce different corner flow structures. The corner regions of the full setup and top corners of the half-liner exhibit thin sidewall boundary layers and a single primary vortex on the floor or ceiling. Meanwhile, the bottom corners of the half-liner configuration contain thick sidewall boundary layers and a counter-rotating vortex pair. Considerable vertical velocities are measured within the sidewall boundary layers. These are directed towards the tunnel centre-height for the full setup and downwards with the half-liner. The differences in sidewall cross flows between the two nozzle arrangements are likely due to distinct pressure distributions in the nozzle, where the secondary flows are set up. Measurements suggest that these nozzle-dependent transverse flows are responsible for the differences in corner flowfield between the two configurations. The proposed mechanism also explains observed differences in corner flow topology between previous studies in the literature; nozzle geometry therefore appears to be the dominant influence on corner flows in supersonic wind tunnels
    • …
    corecore