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A method is presented to describe multiple resonant non-linear spectra in the prcscnce of strong laser fields. The 
Liouville equation for the density operator of the molecular system is transformed to a time-independent linear equation 
system. This can be easily solved rigorously by numerical methods or. after partitioning into a strong-field part and a pertur- 
bation. the solution can be obtained analytically by a novel perturbative approach. The results account for pokver broaden- 
ing. Rabi splitting of signals, and power-induced estra resonances, the latter being rclatcd to the pure dcphssing-induced 
resonances in the weak-field limit. The method can be applied to a large number of multiple resonant non-linear spectrosco- 
pies, especially CARS, CSRS, coherent Rayleigh scattering and sum- or difference-frequency penerstion. 

1. Introduction 

In recent years there were many applications of coherent non-linear methods to the study of molecular systems 
[I]. In a typical experiment a sample is subjected to a number of electromagnetic fields. snd harmonics or other 
combinations of the field frequencies are observed. The intensities of these generated \vavSj are studied as func- 
tions of input frequencies. The signal strength at any choice of frequencies is usually measured as a function of the 
input field intensities so that processes can be associated with specific orders of the susceptibility in the espansion 
of the macroscopic polarization in powers of the incident field strengths_ This same approach is employed in many 
cases where it is not evident, a priori, that a perturbation espansion of the polarization is meaningful - namely the 
situation where the incident fields are resonant with strong transitions of the system. 

The relationships between the observed coherent spectra and theoretical descriptions of molecular energy levels 
and their dynamics is usually described by means of an iterative solution of the Liouville equation to yield the re- 
duced density operator, and hence the induced dipole moment of the system. IO the required order in incident 
fields. This approach yields the jzth-order density operator in the form of an n-tuple time-ordered integral. Such a 
description leads naturally to time-ordered diagrammatic methods for obtaining the various susceptibilities [Z--4]. 
However not all the diagrams that contribute to a particular process are physically distinguishable so that it is ob- 
vious that this time-ordered field approach is not a unique picture of these non-linear processes. The question 
arises as to whether there is a picture in which the physical response can be considered time independent. Such a 
result would be analogous to the rotating-frame description of resonant processes in a two-level system [S]. Indeed 
it was shown by Wilcox and Lamb [6] _ m relation to microwave and optical double resonance spectroscopy, and by 
Freed [7] in relation to magnetic resonance phenomena that in certain cases the equation of motion of the state 
vector for a many-level system driven by a number of fields could be written with time-independent coefficients. 

The need for a non-perturbative approach to non-linear optical responses and spectroscopies has sharpened 
recently because of the increasing importance of multiple resonant phenomena usin, 0 intense laser fields. It is clear 
that the response of media to rather strong fields is accurately described by the perturbation approach when the 
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driving fields are far from resonance such as with second-harmonic generation in transparent media. Even in cases 
where there is a single resonance at a combination frequency the perturbation approach is valid when the medium 
is transparent at the incident frequencies unless the light intensities become much higher than are easily obtained 
with conventional tunable dye lasers. Examples of this would be CARS and two-photon absorption. However 
when the medium has resonances at the incident frequencies and their combinations it is no longer evident that a 
third-order non-linear signal can be detected at fields that are weak enough for the perturbation approach to be 
valid. 

Of particular spectroscopic interest are the three- and four-level resonant processes including polarization spec- 
troscopy [8], CARS and CSRS [9-l 21, coherent Rayleigh processes [12--l 61, and resonant conjugate wave con- 
figurations for spectroscopy [ 17,18]_ In all of these methods the condition of full resonance can be achieved such 
that each level pair is driven by the incident fields or their combination, or is resonant with the outgoing wave. 
Recent work from this laboratory has concerned CARS and CSRS processes in four-level systems [ 1 O-l 2]_ One 
of the cases studied was pentacene in benzoic acid [lo] which at low temperatures displays sharp line spectra that 
allow the non-linear signals to be analyzed confidently. There are in these experiments two incident beams having 
frequencies w1 and w, such that the O-O’ and u-u’ transitions are near resonant with ol, a Raman transition is 
resonant with o1 - 02, a fluorescence transition v-0’ is resonant with w2, and the outgoing wave at 3w1 - wz 
is resonant with the O-u’ transition_ We have recently shown that even at low laser powers it was not possible with 
this system to avoid the occurrence of higher-order processes in resonant x(3’ spectroscopy [lo]. Furthermore in 
our earliest study of the pentacene-benzoic-acid mixed crystal [IO] we observed severe field broadening of the 
lines in the CARS spectrum when unattenuated nitrogen-pumped dye lasers were used for the experiments. These 
field-induced effects require a quantitative description. 

The resonant Stokes generation that occurs when two fields are used to drive a four-level system (resonant 

CSRS) is described by three time-ordered diagrams of the type described above [ 1 l] _ One of these describes a 
Raman transition of the ground state and the other two describe an excited-state Raman transition. In the absence 
of pure dephasing the excited-state Raman transition is not present because of an exact cancellation of this reso- 
nant amplitude when both the relevant time-ordered diagrams are considered [I I ] _ In solids, as the temperature 
is raised. the excited-state resonance appears [ 11,121 in a process we have termed DICE (dephasing-induced coher- 
ent emission). This process we understand to be of similar origin to the PIER-4 process (pressure-induced extra 
resonances in 4-wave mixing) reported recently for Na vaoor [ 19]_ A full understanding of these processes requires 
careful identification of effects higher order than third in-the applied fields. In addition there is the challenge of 
finding a new picture of these non-linear processes in which the DICE effects appear more naturally, and that dis- 
plays more clearly the field-intensity effects on the generation of the extra resonances. 

2. Liouville equations under fully resonant conditions 

The coherently generated non-linear signals produced by mixing optical fields in a non-linear medium can be 
calculated by solving Maxwell’s equations with a non-linear polarization obtained from perturbation theory [20] 
as the source term. This polarization is given in terms of quantum-mechanical matrix elements of the molecular 
system as 

P = Tr(pp) _ (0 

Here p denotes the reduced density matrix of the molecular system, and p the dipole operator_ The time evolution 
of p is described by the Liouville equation: 

where in the Markov approximation, the elements of the damping matrix are given by 
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The phenomenological damping parameters describe population decay (r,,), phase relasation (rap) and feeding 
(-y&J_ Although r,, = rFa, the feeding matrix is not symmetric because ypa 

both population decay and a contribution I’& called pure dephasing: 
f yap_ The phase relaxation includes 

r fYfl=&a + rDp) + rhp _ (4) 

The condition Tr(j)R = 0 implies that the population decay rates and the feeding constants are related as follows: 

The Hamilton operator H is the sum of the molecular hamiltonian Ho and the interaction term V_ In the basis 
chosen Ho is diagonal: 

Hfl” = c+~/lll- (6) 

The additional potential is given in the dipole approximation as 

v= -a-E(t) 

and the external applied field is a function with 211 Fourier components: 

(7) 

n 

E(t) = Cej [f$ eXP(-iWit) + Ej eXp(iWjt)] . 

i 
(S) 

In the general case eq. (2) is a system of coupled linear differential equations. which, in the limit of weak fields, 
may be solved by expanding p in powers of these fields. When the feeding terms are neglected the differential 
equations for each step of the iteration are decoupled. This is the usual procedure by means of which non-linear 
susceptibilities are calculated [ 11,20]. 

If one or more of the field components in eq. (8) has a large amplitude - a more precise definition of a large 
amplitude will be given later - an expansion of p in powers of the fields and the iterative solution procedure is 
not practical_ Under fully resonant conditions, however, a transformation can be applied to eq_ (2) which removes 
all terms rapidly varying in time. What remains is a system of equations for the slowly varying envelopes which 
can be solved both for transient and steady-state effects. The conditions. under which such a transformation is 
possible, are found to be: 

(i) All fields, applied or generated, must be close to a resonance of the molecular sysrem. 
(ii) Each pair of levels of the molecular system can be driven by no more than one resonant field. 

(iii) The number of externally applied fields must be less than N for an X-level system. 
(iv) The externally applied fields may not form a “closed loop” in the level diagram. 

The first two conditions lead to important simplifications of the matris elements of I’. Let p and Y be two levels 
of the system with energy difference orl, = C+ - w,, and let the field component close to resonance have frequen- 
cy oj_ Under such circumstances only the fully resonant contribution resulting from one rotating part of the field 
ej need be retained and all other contributions neglected in the matrix element vMy 

V PV = +lpv-f?j)Ej exp(-iS,,Wjr) , 

where the factor 

sPv = sign(o,,) (9) 

ensures that the proper field component is chosen for a rotating-wave approximation. From the same considera- 
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tions we can show that only one Fourier component for each matrix element of the density operator is needed, 
namely the one rotating with the frequency of the corresponding near-resonance field: 

P,” = PPy eM--is,,+) . (10) 
The matrix elements of p’ are then either slowly varying in time or constant_ 

Now consider the transformation of the density matrix using the unitary operator U= eiAt where A is a diago- 
nal matrix having elements A,. The transformed density operator is 

(UP U’),, = fiPy exp[-i(s,,o+ - A, + A&] - (19 

The time dependence is removed by choosing the parameters A, to satisfy 

wj = s,&$ - A,) = IA, - A,1 _ (121 

In an N-level system N(N - 1)/2 equations of the type (12) exist, but only N - 1 parameters A, may be chosen 
independently. Consequently (N - 2)(N - I)/2 additional relations must exist between the field frequencies Oj in 
order to make eq. (12) valid for all level pairs. This is the source for the conditions (iii) and (iv) listed above. 

As an illustration of these conditions consider, as in fig. 1, the general numbering scheme for three- and four- 
level systems. If A, is equal to the frequency in resonance with the a + p transition, we would have 

A,=O, Ab=Wl, Ac=q, A(f=04_ (13) 

Consequently eq_(12) would be fulfilled for all matrix elements (11) coupling the initial state with any excited 
state. For the other matrix elements we obtain the conditions 

c+=dc-Ab=a,-c+, WS=Ad-Ab=04-W1, W6=Ad-Ac= Wa- W2. (14) 

These conditions may be recognized as frequency selection rules for the generated waves. If or1 and w2 are the in- 
going waves in a three-level system, eq. (14) expresses the fact that we expect pbc to rotate with the difference fre- 
quency. Equally, we could take w1 and w3 as ingoing waves and therefore restrict pat to rotate with the sum fre- 
quency, and so on. 

The rule (iv) arises because each frequency is used to define a particular level pair, so that a set of frequencies 
defines a multilevel sysrem. For example, w1 and w2 define a three-level system and o3 adds no new level. The 
set of frequencies wl, w2 and w4 on the other hand defines a four-level problem. In the treatment that follows 
all field indices are included and the results for different possible ingoing waves may then be obtained by setting 
the unwanted fields equal to zero. 

Having defined the field components in the above manner, the transformation U will remove all rapidly varying 
terms in p and K 

UpW =p, uvu+ = V_ (1% 

The matrix elements of F have the form 

~~,=-~r”*ej)Ei=-HVj~tv), 06) 

C 

T! w3 

b 

T-l- 

w, w2 

0 

(0) (bl 
Fig. 1. General numbering scheme for waves and levels in 
three- and four-level systems under fully resonant conditions. 
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where the one-photon resonant Rabi frequency is I+_ Finally, the transformation of the relaxation matrix is ob- 
tained by replacing all matrix elements of p in eq. (3) by the corresponding matrix element of 6: 

u(d)RU+ = (5)R _ (17) 

The equation of motion for j.j can now be rewritten in the form 

$= -i[P,A] + i[p,HO + i7] + ($lR . (1 W 

Since ($)R is linear in ii, eq. (18) can be rearranged into a linear equation system: 

p”=x@, (lgb) 

where fi and 5 are considered to be arranged as column vectors and X is a matrix of dimension IV’ X N2. X can 
be regarded as matrix representation of a superoperator, and a generator formula for its matrix elements is given 
in appendix A. The main point is that X is independent of time. 

3. Solution of the slowly varying Liouviile equation 

If the field amplitudes of the ingoing waves are essentially constant in the interval Cl < t < 00, eq. (18) can be 
easily Laplace transformed: 

sr-&)=X-r, (19) 

where PO = jY(r = 0) and r is the Laplace transform of p: 

r(s) = J dt e-+* P(t) . 

0 
w9 

The system of coupled differential equations is thereby transformed into a linear equation system which can be 
formally solved in the form 

r= -(X - sl)-l-Fo. (21) 

The back transform of r finahy yields the time evolution of p for fields that are swirchcd on at t = 0. The steady- 
state result can be directly obtained from 

j5(-) = ,‘i; (SP) _ (‘3) 

h alternative way to obtain the steady-state result would be to set 5 in eq_ (18) to zero and solve 

Xfi(-) = 0. (33) 

The determinant of X vanishes (see appendix B), hence eq. (23) has a non-trivial solution. This is seen by noting 
that the rows of X corresponding to the diagonal elements of i, sum up to a zero row since 

Tr$=O. (24) 

We can therefore replace one of these rows, say the first one corresponding to jUaF by the row equivalent to 

Trfi=l, (25) 

yielding the new matrix equation 

X’@(-)=a, u= [l,O,O ,--., 01, (36) 

which can formally be solved by matrix inversion of X’. 
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4. Treatment of perturbations 

The solution of the equation systems (21) or (26) is possible, but analytically cumbersome, since the matrices 
to be inverted are of dimension 9 X 9 and 16 X 16 for three-level and four-level systems. However numerical solu- 
tions can be readily accomplished in the general case. Frequently situations are encountered where not all of the 
fields wl, wZ and w3 are strong. The matrix relations (21) and (26) can be simplified considerably if not all of the 
ingoing waves are chosen as strong fields, and the others are treated by a perturbation theory. The analytical results 
obtained in this way give insight into the effects produced by strong fields in fully resonant non-linear spectroscopy. 

It is convenient to subdivide X into a strong-field part X0 and a perturbation W. Such a partitioning is always 
easily accomplished since X is linear in all field amplitudes. X0 is obtained by striking out all field elements from 
X that are to be chosen as weak. The remaining terms are incorporated in W. Furthermore we expand r in powers 
of the weak-field part: 

r = r(O) + r(t) + . . . + r(n) + . . . . 

Introduction of these definitions into eq_(21) yields the “zero-order” result 

(X0 - sl)r@) = -so . 

(27) 

(28) 

The higher orders of r obey the recurrence relation 

(X0 - sI).,(“l = ___w.#r-1) _ (29) 

The first order is found by replacing the vector PO by W-r(o) and solving the same equation system again. The 
formal solution to (28) and (29) is 

r(O) = -(X0 - sI)-I. PO, ,fnl = [_(XO _ sI)-‘.W]~r.~(ul _ (30) 

The solution of eq. (26) is also straightforward. Instead of inverting X0 - sl it may be easier to directly solve eq. 
(29), since the vector W-r(“-l) may contain many zero elements. In the special case that all field amplitudes are 
assumed to be weak the required matrix inversion is easily performed and eq. (30) yields the non-linear susceptibil- 
ities under fully resonant conditions that are usually obtained by multiple time integrals [ 11,20]_ 

5. Application to the three-level system 

The explicit form of the linear equation system (18b) for a three-level system is easily found using the matrix 
elements for the X-superoperator from eq. (AZ). This matrix equation is displayed below: 

c 
-S yba -fCll -iW; iW, 1 -iW; 0 iW, 0 

i ran 1 

0 -rbb-s ycb iWr -iW, 1 0 -iW; 0 iW, -- I rbb 0 

0 0 -r&-s 0 0 I iW; iW; -iW? -iW, r 
CC 

0 

-iWi iW1 0 -iAa,b-S 0 
I _ 
, -1% 0 0 iW, rab 0 

iW; -iW; 0 0 h&-S ’ 0 -iW; iWs 0 
__I__-_-_---- 

rba = - 0 
------------------- 
-iW, 0 iW, -iW3 0 1 -iAa,--s iWt ) 0 0 r 0 

I ac 

~0 -iW3 iW3 0 -iWa * ’ 0 
L AWL - _-_A_%--s? _ _ _ _ _ _ _ _ 

0 rbc 0 

iWs 0 -iW; 0 i W; 0 0 1 iAzC-s -iW; ‘m 0 

0 iW; -iWz iW5 0 0 0 I-iW, iAi,-s r&, 0 

, (31) 
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where 

Aaob = W1 + mob - ‘r,, = -A;, , A,, = w2 + o,, - ir,, = -An . 

Abe = Cd3 + abc - irb, = -Azb . (33) 

and 

IV1 =babmel)q, ltrz = (Pa,-e&2, rV3 = @bc.e3k3 - (33) 

For the sake of completeness we give also the equation system for the steady-state result corresponding to eq.(26) 

1 1 1 0 0 I 0 0 0 0 
I 

0 -rbb rcb iiV; -ilVt I 0 
I 

-iW; 0 ilV3 

0 0 -r,, 0 0 I iW‘, i IV; -iiV, -ilV3 

-ilV, iW, 0 -iAa,b 0 
I 
I -iIV; 0 0 i IV, 

iW; -i$ 0 0 iA$, ; 0 i@ iIV3 0 
--_--_--_-_---------t_ _--- -- 
-ilV, 0 ilV, -iLV, 0 I -iA,, ilVl t 0 0 

I 
0 -iWj iW3 0 -iW, ! iLV; -iA,, I ’ 0 0 

------- -!-----_- 
iW$ 0 -illi; 0 i$ 0 0 1 iAzC -iIVy 

0 i IV; -iW; ilV$ 0 0 0 : -ilV1 iA& 

(34) 

In both eqs. (31) and (34) an initial condition p. = la) (a 1 was used. This is the proper equilibrium solution in the 
absence of fields for our choice of y parameters. An equation system equivalent to eq. (34) was reported earlier by 
Bloembergen and Shen [Zl]. The perturbation matrices differ in the first row for the sready-state and rhe hplace- 
transform problem. In the following applications we will solve eq. (31) for various combinations of ‘*strong*’ and 
“weak” fields. 

5.1. All fields treated as perturbations 

If all fields are treated as perturbations, the zero-order matrix X0 - sl contains only the three feeding parame- 

ters as non-diagonal elements. The corresponding 3 X 3 block can easily be inverted: 

L rcc +s 

and the remaining matrix elements of the matris (X0 - sl)-l are the diagonal elements -(iAab + s)-l. etc. The 
zero-order solution according to eq. (3Ob) therefore is 

YbaYcb + Yrnrbb + ‘) 

s(rbb + mcc + s, 

-J’ch 

rbb + s)(rCmc + s, 

1 

(35) 

r(O) = [l/s, 0, 0, 0, 0, 0, 0,o. 01 (36) 

and after performing the product (X0 - sl)-l -W, eq. (30) takes the explicit form 
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,(n) 
aa 

rg 

(n) 
‘ub 

(n) 
‘bu 

(n) 

‘bc 

00 
rrb 

-iW; 
0 - 

rbb +.T 

1 
s 

C 

C 

C 

C 

C 

C 

C 

( 

iWi 

rbb +s 

-iW, 

rbb +s 

0 -igt Wz ig3 iv; -k3 w3 

i IV; 
0 - 

rbb +s 
0 0 ig:! 1V; -ig4 IV; 

i W; 

FCC +s 

-ig2 IV2 

-iW, 
L 
rcc +s 

kj FV3 

ifi$ 

rcc -l-S 

- rv; 

Aob-iS 

-iW, 

rcc +S 

W7 ---zL- 
A=b -iS 

0 0 0 0 

4, 

A4b -iS 

4; 

0 0 0 

-w; 
f$, +iS 

0 

W; 

L$, +iS 

WI 
Ac- is 

0 0 0 I(37) A;b +iS A$ +iS 

IV2 -W3 - - 
A,,-is A,,-is 

0 0 0 

[V3 
-0 
L&-is 

IV; 
-0 
AZ= + is 

W; 

Abe-iS 

-w3 

Abe-iS 

-W, 

f&-is 

Au; 

Ai=+is 

D 0 0 0 

- “5 

A& + is 

W; 

Az=+is 
0 0 0 0 

‘5’; -IV-$ 
- - 
Ag,+is A&+is 

IV1 

A&+is 
0 0 0 0 0 

A&+is 

where 

rbb+“l,b+s 

” = (rbb + s)(r,, + S) ’ g’ = (rbb + S)(r,, + S) ’ 

ycb 

&J - “Ibo 

g3 = (rbb + s)(T‘,, + S) ’ 

&7+s 

g4 = (rbb + S)(r,, + S) - 

The only non-vanishing first-order results are, therefore 

‘ub 
(1) =#;I* = -W1/s(A4b - is) , 

r,(f) = t-g)* = -W2/s(A4c - is) , 

and the inverse Laplace transform yields 

~~~‘(f)=(Wt/a,,)[exp(-iA=br)- 11 , 

D~~‘<r) = OV~lA,,) [exp(-if&t) - 11 , 

from which the steady-state values are obvious_ 
The second iteration of eq. (37) yields the population terms: 

(384 

(38b) 

WW 

Wb) 
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$1 = _ m,b + s) IV, w; 2(r,7, + s) (7cb ’ 7ba ’ s) IV? iv; 

s(rbb+s) (AOob - is)(Azb + is) - s(rbb +S)(~CC +s) (A,, - is)(A& + is) ’ 

r;;~ = 2(rab + ‘) w, w; W,, + S) 7,b 

s(rbb + ‘1 (A,, - iS)(& + iS) + S(r& + S)(qC + d 

p = 2(rac + S) 
lV2 rv; 

CC 
S(r,, +S) (aaC - is)(Azc + is) 

and the coherent terms: 

(21 Q)* = 
itJ2 w; 

‘ab S(A,, - is)(A,, - is) ’ 

r(2) =$I* = 
IV, w, 

ac 
s(Aac - is)(A,, - is) ’ 

(2)_ (2)*_ w, rv; 1 1 
‘bc - rcb - p..-- 

s(Abc - is) Azb + is 1 Aac -is _ 

(Aac - is)(A& + is) ’ 

(404 

(4Ob) 

(4Oc) 

(4la) 

@lb) 

(Ilc) 

Since all the zeros of the denominators are obvious the Laplace back transform is straightforward but will not be 
reproduced here. In the general case the time development of the density matrix elements may become rather 
complicated, but for times longer then the relaxation parameters the steady-state solution may apply. which is 
easily found using eq. (22). In this limit eqs. (41a)-(41c) reduce to the second-order resonant susceptibilities al- 
ready discussed in an earlier paper [22]. The feeding terms enter the formulas for the second-order populations 
(dc terms), but do not affect the coherence terms in second order. 

In third order the population terms become proportional to the product of all three Rabi frequencies. Since we 
want to allow no more than two ingoing beams these terms vanish as long as the coupling with the generated wave 
is neglected. The third-order off-diagonal elements are 

rj;) = 4(rab “1 w; IV, w, 
s(rbb +‘I (Azb + is)(A,, - is)(A,, - is) 

+ Wac + s)(27cb + 7ba * S). q w2 Iv; 
s(rbb + ~1 (FCC i s) (nab - is)(A,, - is)(Azc + is) 

Wl w3 w; 

- s(A,b - is)(A,, - is)(A,, - is) 

i- WI IV2 w; 1 1 

s(Aab - is)(A& + is) G-A- ’ ac + is 1 
(3) - 2(rab * s) w, w; IV, 

‘bc -- 
s(rbb +s) (Aab - iS)(& + iS)(f& - is) 

(43a) 

(4,b) 

(4%) 

(42d) 

(4%) 
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+ 
2(r,, + s)(7ba - 7,b + s) wa rv; w3 

s(rbb + s)cr,, + S, (Aac - is)(A:= + is)&,, - iS) 

~Y,IY;Iv~ 

- S(Abc - iS)(& •t is)(~$& + iS) 

w, FSI; IV, 
+ 

S(& - is>(A,, - iS)(Aab - js) ’ 

,(3) = 
2(r,, + s)(27bn + 7cb + 2s) w* w; w2 

oc s&b + wee + s, (A,, - is)(A,, - is)(Az= + is) 

w,, + 4 IV, w; w2 

+ s(rcc + s, (Aab - iS)(A:b + is)(Aa,, - is) 

rv, w3 w; 
- 

s(% - iS)(& - is)(A,, - is) 

IV, w; FV2 1 1 
+ --- 

s&c - is)(Ab, - is) Azb + is 1 A,,--is - 

7b 8b 

!9i 20k 21 k 

13 i I 
40 

E 
16i 

E 
221 

z- 
E i I 

I 

E f 
lle 12h 

17i 18i 

R i i 
23m 24m 

(420 

(4%) 

(4211) 

(43) 

(42) 

(42P) 

(42d 

Fig. 2. Diagrammatic representation of the third-order contri- 
butions to the density operator in a fully resonant three-level 
system. Time ordering is from left to right. Full and broken 
lines describe evolution of the bra and ket part of the density 
operator, respectively. Direction of the arrows, upward or 
downward, refers to annihilation or creation of photons. The 
letters a-m under each diagram refer to the corresponding 
term in eq. (42). 
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The terms (42a), (42b), (42e), (420, (42i) and (42k) evolve from the second-order population terms and include 
feeding. The only terms which show the extra DICE [ 11,121 resonance are (42d) and (42m) both unaffected by 
feeding contributions_ 

A method has therefore been presented which will generate all non-linear fully resonant susceptibilities in a 
three-level system to arbitrary orders. Extension of the scheme to the four-level system is discussed below. The 
calculation is even easier if directly performed on the steady-state solution_ (That is, replace l/s by 1 and s by 0 
in eq. (37)) 

It should be noted, that e,zclz of the terms in (42a)-(42m) corresponds to several diagrams in the usual time- 
ordered iterative integration scheme. To illustrate this the conventional time-ordered diagrams that correspond to 
the terms (42a)-(42m) are collected in fig. 2. Eqs. (42) could be made more compact by extracting common mul- 
tipliers and denominators. We have not done this in order to make more transparent which of the terms are singled 
out in an actual experiment. Thus, for example, an experiment with oI and w2 as ingoing beams and observing 
the signal at w1 (which means rob) is described by terms (42b) (population type) and (42d) (coherence type), and 
the corresponding conventional diagrams are numbered 5-S. 

%!. Sohtion for Q strong al field 

The terms IV, and IU; are now retained in the zero-order X0 matrix which then breaks up into three diagonal 
blocks indicated by the broken lines in eq. (31) and eq. (34) respectively. The zero-order solution for the two 
2 X 2 blocks has the trivial result 

#O) = r(O) = +: = $1 = 0 
=c co c (43a) 

The remaining 5 X 5 linear equation system can be solved leading to 

J$) = [ l/sOl(s)] [(rbb + s)(Aab - is)(Ab + is) + 2W1 W;(l?,b + s)] , (43b) 

rg) = [l/SDl(S)] 2W, qr,, + s) , (43c) 

p) = 0 , 
cc (43d) 

‘ab "'=-[l/SDl(S)]Wl(rbb +S)(& +iS)'riz)* , (432) 

with 

DI(s) = (rbb +s)@,, - iS)(& + is) + 41vl Iv;(r,b + S) _ (44) 

The couplings lV, and W3 can now be treated as perturbations_ the vector Y = -W-r(O) has only the following 
non-zero elements: 

Y,, = YL = iIVz,z) + iIV,~~~’ , (45a) 

Ybc = YTb = iW3 rbb (O) + iIUz~~~’ _ (45b) 

Eq. (29) for the first-order results reduces therefore to two 2 X 2 problems which are complex conjugates. The 

solution is 

(46) 

where F,(s) = (A,, - is)(Ab, - is) - WI IV;, leading to the final result 
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- [w,w;rv,/sD1(s)Fl(s)1[2(rab +S)(A,,-iS)-(rbb+S)(A~b+iS)l- (474 

The resulting terms have been grouped in such a way, that each of the four formulas (47a)-(47d) corresponds to 
a certain choice of ingoing and observed waves. In a particular experiment one will therefore have only to deal 
with the appropriate term. 

The relation between each term and its corresponding experiment is symbolized in fig. 3, where we also included 
a diagram corresponding to the “zero-order” equation (43e). In contrast to fig. 2 the arrows no longer indicate de- 
veloprnent of the bra or ket term and no time ordering is intended to be shown_ In fact, eq. (47~) contains both 
time orderings of w1 and o2 which can easily be verified by expanding (47~) in powers of W1 and comparing the 
result with (41~). In a similar way, expansion of (47a) leads to the first-order term (38b) and the third-order terms 
(42k) and (42m), the latter containing the diagrams numbered 23 and 24 of fig. 2 leading to the DICE resonances, 
previously discussed by us in relation to difference-frequency generation [22] _ 

5.3. Solution for a strong o2 field 

The treatment of a strong w2 field is completely analogous to the previous case in section 4.2. Again the X0 
matrix can be blocked by arranging the rows and columns in the order aa, bb, cc, ac, ca, ab, cb, ba, bc to yield a 
5 X 5 and two 2 X 2 problems. Due to the feeding from level c to b, however, all three populations are now differ- 

i ii 
. . . 
111 iv 

(43e, 67) (470,660) (47b,66bl (47c,66c) (47d:6EId, 

vi 
Pl8e.69) 

vii 
(520,700) 

. . . 
Ylll ix 

(52b.70b) (52c.70~1 ~52dx.~Od~ 

H- I? ?Y 
xii 

. . . 
Xl,, xiv 

(55b.7lbl (55c.71~) (55d.7ld) 

Fig. 3. Schematic representation of the various terms resulting 
from the calculation of a fully resonant three-level system 
under the influence of one strong field (thick arrow) and one 
weak field (thin arrow). The generated wave is indicated by 
the wavy arrow. Below each diagram corresponding to an es- 
perimental configuration the appropriate formula numbers 
for the Laplace-transform result and the steady-state result 
are given. Contrary to those in fig. 2 the diagrams cannot be 
interpreted as representing a certain time ordering. 
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ent from zero. The zero-order solutions are 

mb 
(0) = @ = /.;j = /(&) = (J 

and 

I-$)) = [(rbb + s)/sDz(s)] [(Azc + is)(A,, - is)(f’,, + s) + 2ft’2fv;(r0, + s)] , 

D2(S) = (An= - is)(A:= + iS)(r,, + s)(rbb + s) + 2w2iv;(r,c+ s)(zrbb l rCb + 2s) - 

Now the perturbations were W, and I$, and the non-zero elements of the vector Y = --W-T(~) are 

Y& = iiYl (rz’ - (O) * (0) 
rbb ) + iiv3 rat , 

YCb = iiil*3(rJF) - rii)) + iW,rE) _ 

The first-order problem reduces again to a single 2 X 2 problem: 

(48b) 

(48~) 

(48d) 

(48e) 

(49) 

(SOa) 

(Sob) 

which yields 

$’ = [ivl/S&(S)&(S)] {[z(r,, + S)(-& - rbb - S)(& + iS) - (Aoc - is)(rcc+s)(rbb +s)I wZJvz 

- (azc + is)(A=c - is)(r,, + s)(r& + s)(A& + is)1 (52a) 

+ [W~W~/sD2(s)F2(s)[(A~, + is)(& i- is)(r,c + s)(rbb + s) - ‘“~$@‘a, + s)(ycb - rbb - s)] - (52b) 

$.’ = [IU, t@&(S)&(S)] [(r,, + s)(rbb + S)(Aoc - is)(Aiic - Aab + 3is) 

+21V3rv*,(r,,is)(rbb-~~b+S)i - - (5%) 

+ [w,w;ru;/SD2(S)F2(S)] [2(Aab - is)(r,, + s)(rbb - ycb + s) - (A;,“, + is)(rcc + s)(rbb + s)] , (52d) 

where F2(s) = (Aab - is)(A& + is) + W;JV,_ Again each term corresponds to a certain choice of experimental con- 
ditions as indicated in the diagrams vi-x in fig. 3. 

5.4. Solution for a strong w3 field 

For this case blocking of the X0 matrix is achieved by the index ordering aa. bb, cc, bc, cb, ab, ac, ba, ca. Solu- 
tion of the zero-order problem yields as the only non-vanishing element: 
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‘&l (O) = l/S, (53) 

corresponding to p7, = 1. The strong w3 field alone has, therefore, no effect since both levels b and c have no 
equilibrium population. The first-order problem thus takes the simple form 

and the solution reads 

mb (‘) = -Wl(Aa, - iS)/sF3(s) + WzW;/SF3(s) , 

r(l) = - W2(Aab ac - iS)/SF3(S) + WI W3/sF3(s) . 

with 

F3(S) = (Act, - is)(A,, - is) - IUs It$ . 

The corresponding diagrams are shown as xi-xiv in fig. 3. 

Wa,b) 

(554 

We) 

5.5. Convergence of perturbation approach 

On the basis of these results we may now specify more precisely what is a “strong” and a “weak” field in this 
approach_ We have already seen that expansion of the strong-field results in powers of the strong field may yield 
the results of the conventional perturbation theory expansion of the density operator as found in eqs. (38)-(42). 
If such an expansion were to converge sufficiently rapidly, the field treated as “strong” would be sufficiently 
weak for perturbation theory to be valid. From eq. (43e) we can deduce the following convergence condition: 

4IvI Wi(r,b + S)/(rbb + ~)(Acb - iS)(Afb + is) < 1 , (56) 

which on resonance reduces to 

4Wt I%$/rbbrab < I . (57) 

From eq. (46) we obtain a similar condition, namely 

w1 w;/racrbc < I . (58) 

Similar relations are found for W, and W3 from eqs. (48), (5 1) and (55). 

6. Transient effects 

To study transient phenomena we require the Laplace back transforms for the formulas derived in the previous 
section. This is usually done by first expanding the Laplace-transformed formula in partial fractions: 

r(s) = h ci 
j=l S-Sj’ 

where si are the first-order poles of r(s) that are considered here and the coefficients Ci are found through 

(59) 

Cj = iim (S - s&r(s). 
S-Sj 

(60) 
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The back transform in the time domain then is 

n 

p(f) = tz ci exP(sif) - (61) 

The real part of a pole si, therefore, describes the damping of the signal. All formulas of the preceding section con- 
tain the pole so = 0 corresponding to the time-independent - steady-state - solution. The function T(S) has the 
form: r(s) = f(s)/g(s), so that the poles are found as the zeros ofg(s) = Iii (s - si). and eq. (60) has the solution 

(6% 

which is readily adopted to numerical procedures. The zeros ofg(s) may be found numerically, but under fully 
resonant conditions the results are sufficiently simple to obtain that a numerical analysis is unnecessary. These 
analytic results are discussed below. 

All terms connected with the strong w1 field contain the factor III(s) [see eq. (44)] in the denominator. which 
in the case of full resonance has zeros at s1 = -rob, and s2 3 = -f(f’,, + r,, + iC2 

enough such that 52, = [ 16 I W,l* - (rbb - rab)*] I/* - . 
n)_ Thus if the w1 field is strong 

1s real, the signal is expected to decay with a time constant 
rb, + I-‘,, and nutate with frequency CZa_ The perturbation with the JV2 and IV3 fields involves the factor Fl(s) 
which has zeros at 

s4,5 = -4 i (Aac + Abr + [(A ac - A& + 4W, W;] 112) _ 

in the case of full resonance this reduces to 

(63) 

s4.5 = -${ra,+-rbc f i[4W, rV; -(r,,- rbc)z]l/*} _ (64) 

So if the IV, field is large enough to make the expression under the square root positive. oscillation will occur with 
frequency 

aL, = [41v& - (ra,-rb,)~]*~2. (65) 

Thus a strong ot field will cause the non-linear signal at o7 or o3 in the experiments shown in diagrams ii-v of 
fig. 3 to ring with two frequencies having the rario CZa : SZ, = 2 : 1. Of special interest. however. is the intensity 
range in which the oscillations begin to evolve. since such experiments should yield information about the corre- 
sponding relaxation parameters. Our results show that the decay rate is the sum of two r parameters. but that the 
onset of oscillation is determined by their difference. Therefore. both r parameters might be extracted from mea- 
surements of this transient behavior. 

In the case of a strong w2 field the situation is somewhat more complicated as a result of the presence of the 
feeding term r,b, which causes&(s) to be of fourth order in s. If we choose r,b = 0 esplicit results are found to 
be as given in eqs.(63)-(65) afteLreplacing (IV,, rab, rbb. r,,. rb,) by (IV?_ r,,. r,,. rab. rbr)_ The case y,b 
# 0 is best solved numerically. Finally, in the case that o3 is the only strong field. only two non-zero roots exist 
of the type of eq. (63) 

s1.2 = -ii{Aa,+Aa, f [(Aab - Aac)2+4W3W;]1/2). 

with the on-resonance solution given according to eqs. (64) and (65). 

(66) 

7. Lineshapes 

Of great interest in non-linear spectroscopy are the influences of field intensity on the steady-state response. 

For tbe strong field being w1 we find: 



148 B. Dick. R.M. Hochstrasser / Resonant non-linear spectroscopy Or strong fields 

Pab = -I-b, A;b ~+‘,/Dl(O) 9 

ii,, = [f~‘~/D~(O)F~@)I [Iv1 ‘<(rbbAab - 2rabAbc) - rbb%bAlbAbc] 

(67) 

(684 

+ [ wl rv; rv3 14 (O)q (O)] (rbb A:& - 2&b Aa,) . (684 

The results for a strong w2 field are 

- pat = -Iv&b r,, A:C/D2@) , (69) 

&b = ti~,&(O)F,(O)l crv,@ t~r,,‘$&Ycb - rbb) - rb&Aacl - ~,#~c~~c~bb~cc~ 

+ t~cI;W2/~2(W2(0)1 [~;c~&c~bb + 2”2$rac(rbb - ?&,)I 7 

(704 

G’Ob) 

if& = [WI ~;/~~@)~2@)l [~bb~cc~ac(~~c - A&) + 2bw;r&bb - &b)l 

+ [w,w;1v;/D2(O)F2(0)1 wac&(rbb - 7cb) - ~&&;cl - 

Finally for the case that the w3 field is strong we obtain 

&b = -Iv, AJF3@) + 1v#;/F3(0) ) 

(7Oc) 

0-W 

(7 1 ah) 

4, = -“2Aab/F3(o) + iv, i(r3/F3(0) _ (71c,d) 

The corresponding diagrams in fig. 3 are labelled with the appropriate formula number in order to make the iden- 
tification of the experimental conditions involved more obvious. 

In the thin-sample approximation (neglect of depletion of the pump fields) it follows from Maxwell’s equation 
that the intensity of each generated wave at wt. wz or w3 is proportional to the square of the corresponding den- 
sity matrix element, e.g. 

I(at) a Iktabpbai 2 = ]~ab121~ab]2 - (72) 

Since these expressions contain resonance terms, A,,v, both in the denominators and numerators the lineshapes are 
in general complicated and non-lorentzian. For some cases we will give an analytic discussion, for others we will 
show the results of numerical simulations_ Two important experimental conditions may be distinguished: one in 
which the strong field is tuned, and the other, in which the perturbation field is scanned. 

In the simplest experiment the strong field is scanned and the signal observed at the same frequency, with no 
additional fields present. The corresponding diagram is fig. 3i, and eq. (67) [ or, equivalently, fig. 3vi with eq. (69)]. 
With the definition of detuning 6 = wba - w t the square of eq. (67) has extrema for 

61’0, 62.3 = ‘(x2 - i)1’2rOb , (73) 

with 

x2 = 41vI WI /rab rbb _ (74) 

For x < 1 the intensity of the generated beam is predicted to have a maximum at 6 t = 0, while for x > 1 this 
maximum splits into two maxima at 62 and 6, with 6 1 now being a minimum. The corresponding intensities are 
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I, =xq& r&/4(1 i-x2) ) I,,, = r*b/16r,, . (75) 

For largex the points of half intensity are at 6 = *(3 + 81/7)*/2f’0b_~_ Therefore the width of each peak and the 
peak separation will be 21’,b_~_ The result is that the width of the spectrum increases with increasing field strength_ 
This well-known property of a two-level system is demonstrated in fig. 4 for several sets of parameters. Note that 
the upper level lifetime rbb = ‘& has a strong effect on the intensity parameters and consequently on the line- 
shape. 

The situation becomes more complicated in the presence of an additional weak field. The generated field may 
now have the same frequency as the weak field, or be the difference or sum frequency_ The intensity effect can no 
longer be contracted to a single intensity parameter x like in the previous example. This means. It’. y and I’ now 
act differently on the lineshape. As an example we consider the type II difference-frequency generation process of 
eq. (68~). Fig. 5 shows some simulated lineshapes corresponding to this process measured as a function of the 
strong frequency detuning. It is seen that increasing the value of ltr first broadens the line, then splits it into two 
lines which further broaden while they shift apart. Decreasing the value of yba3 however, leads to different behav- 
ior with the splitting into two peaks occurring in a different range or vanishing altogether at the stated field inten- 
sities wlien yb, becomes very small. 

All experiments performed with the strong fle!d scanned have in common that the observed linewidths are 
strongly affected by the Rabi frequency of the strong field so that the interesting molecular and relaxation parame- 
ters are not clearly exposed in such a scan. 

We now consider the predictions for lineshapes obtained by scanning the weak field. One example concerns the 
difference-frequency generation type II process, eq. (68~). With the strong field w, fixed to resonance. the condi- 
tion ~51/X = 0 leads to a polynomial of order 5 in 6, which is defined as the detuning 6 = wac + wz_ One root of 
this polynomial is 6 - 0, and two roots are always complex. Therefore only two situations are possible: 

(a) only one mrn&mtm at 6 1 =O, 
(b) two maxima at 6 = kg2 = WI and a minimum at 6 = 0. 
At sufficiently large field strengths 1Yt the line splits into two lines with separation Zlr’l. Tile widtJzs of rlze zwo 

lizzes, however, are zzot affected b_v tlze field izzterzsity. Varying the I’,,, parameters in the model reveals that the 

w~-Wbo 

Fig. 4. Strong field response lp,bl’ of a two-level sysrem as a 

function of detuning from resonance. The parameter is the 
on-resonance Rabi frequency of the field. 

,-- 
-20 -IO 0 10 20 

w~- Who 

Fig. 5. Difference-frcqurncy generation (type II) in a three- 
level system with one strong and one weak ingoing field. The 
weak field is fixed on resonance and the strong field scanned. 
The parameter is the strongfield Rabi frequency Ir,, = 1. 

rbb = ? tixed). 
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wco- WC? 

Fig. 6. Simulation of a pure power-induced estra resonance in Fig. 7. Power effect on a DICE resonance. Parameters are wb= 
type II difference-frequency generation. Parameters arc: detun- -wr=s,r,,= 1, rbc = 2, IY = 10, -Qn = 2 in this simulation. 
ing who - w, = 5. r,, = l?=b = 1. rbc = 2. 7bn = 2. corrc- The pure dephasing parameter F is changed from 0 to 100 by 
sponding to pure radiative damping. varying rob. 

-20 -10 0 10 20 

Wca- w2 

linewidth is essentially determined by the width of the resonance over which the weak field is tuned. If the strong 
field is detuned from resonance basically the same behavior is observed, but the two lines now have different in- 
tensity_ This is simuIated in fig. 6 for various strengths of the strong field. Detuning of the fixed frequency is the 
condition under which extra resonances of the DICE and PIER-4 type can be observed. Under these conditions 
the strong field creates two lines that are separated initially by the fmed frequency detuning. Both resonances shift 
with increasing field strength. The weaker resonance appears at the energy where the extra resonance is expected. 
Therefore, fig. 6 describes a pure power-induced extra resonance since the pure dephasing is set to zero. A further 
very interesting fact is that the lineshapes are found to be insensitive to the choice of the population decay parame- 
ter rb,_ This is in contrast to what was found in the simulated spectra with the strong field scanned. In the purely 
perturbative treatment of the type II difference-frequency generation feeding parameters do not appear. 

In fig. 5 the extra resonance is studied under conditions where both a strong field and pure dephasing are pres- 
ent. For a fiied value of 1%’ the pure dephasing parameter F is reduced from lOOz, to 0. Obviously the general 
appearance of the signal is not changed. The difference in peak height in the limit I’ = 0 is attributed to the detun- 
ing of the fixed frequency_ Varying the parameters rb, and r,, it is found that both linewidths depend on both 

parameters. In the weak-field limit the DlCE resonance has width r,, while the other resonance has width r,,. 

The strong field, therefore, not only can induce the extra resonance, but also affects its position and linewidths. 
The Iatter effect is, however, not power broadening but corresponds to a mixing of the character of the “normal” 
and the “extra” resonance which become undistinguishable at very high field strengths (W 9 rMy and detuning). 
These results suggest that the DICE resonance observed in solids [ 11,121 and PIER-4 “extra” resonances seen in 

sodium vapor [ 191 might also be induced by sufficienrly intense fields even in the absence of pure dephasing 
(solids) or collisional redistribution (gases)_ In section 7 it will be shown that this is indeed the situation for a 
four-level system. 

8. Strong-field CARS and CSRS processes in a four-level system 

The technique described here is not sufficiently general to handle Stokes and anti-Stokes Raman processes for 
all level schemes. However it does apply to CARS and CSRS in a four-level system which is a configuration readily 
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accessible to experiments. The two- and three-level responses in strong field can be calculated by another approach 
which involves a stepwise application of the rotating-wave approximation. These results will be discussed in a later 
publication_ 

CARS and CSRS processes in a four-level scheme are included in fig. l_ CARS involves effects resulting from 
lV2, W3 and lV5, and explicit formulas can be obtained wlten IV2 is conside._ rpd to be a strong field. In most molec- 
ular systems if w2 is on-resonance with an electronic transition Q + c then it will be off-resonance for process b 
+ d. This implies that lV5 can be considered as a weak-field effect for the case IV5 = pb& Q h (udb - 02). in a 
common situation this detuning would correspond to the difference in the vibrational frequencies (wba and w&) 
of the ground and electronically excited states. Thus for many cases of interest FV5/c can be as large as 5-50 cm-I 
and still be treated as a perturbation in the four-level problem. Similar considerations apply to the Stokes process 
using lV2, 1V4 and W, in tlte abed four-level system of fig. 1 b. The strong-field effect cazl be chosen as IV2 and as 
before !Vs can be chosen as a weak field for many cases of interest. The 16 X 16 matrix X for these four-level prob- 
lems is given explicitly here (table 1) in terms of the possible six resonazit Rabi parameters WI to IV6 and the six 
feeding terms rij_ These parameters along with the I’ completely define the four-level problezn assuming that the 
temperature T is sufficiently low that kT is very mucli less than any of the energy separations. Results for any of 
the fields chosen as strong can be obtained numerically by inversion of the 16 X 16 matrh. 

The result for the CARS signal at 20~ - o2 is obtained from the eleznent pF$) which is found to be given as 
follows. with the definitions C?(O) = Aad Ati - Iw21’- g= &(rbb - &b)&& 

5:’ = - [ !vz Iv* fv 3 5 r ~~r,,/c~(O)~~(O)~~(o)] [A&A;rAOC - !v$‘;A:, + %1’$‘;(A,d + A&)] 

- “~v;‘“~‘v~;v~‘5bbr,,/~2(O)G?(O)Abd - (76) 

Tltis expression is exact in the case W, and lV, represent weak-field effects. while lt’-, may have any value. When 
all fields are chosen as weak this expression reduces to the conventional CARS ful!y;esonant expression that com- 
poses ~(~1, and terms that would conventionally be calculated from xc’*) with zz 2 5. odd. The convenrional $3) 
term is 

X&3i~~ = -pacp*bcpbdpdalAac Aad Aab _ 

One interesting xf5) term that depends on the existence of feeding is 

(77) 

The feeding terzn X&g contains an excited-state resonant term Ati norznally ozily seen througir the DICE or 
extra-resonance effect. Presuznably eq.(76) is the proper expression to employ for studies of resonant CARS 
processes when WI is an intense laser field near resoztance to the traztsition a + c. This result predicts resonances 
at both o2 - w3 = &+a and wZ - w3 = w&, the w& resonance depends on ybc in the limit of weak fields. 

Some CARS lineshapes are simulated in fig. 8 with w1 fixed on the a -+ c resonsnce and w-; scanned. If both 
fields are weak two resonances appear at q,, = w? - w2 and CQ, = 2~3 - w3. With increasing strength of the 
wz field each of the resonances splits symmetrically into two lines. 

The corresponding Stokes signal at 2w2 - o4 (wZ < w?) is obrsined from the cb matrix element: 

As with the CARS case the last term in (79) in tile limit of all fields weak corresponds to a ~(~1 process. This 
describes Stokes generation from the population created as a result of feeding from level c into level b through rcb_ 
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OUTGOING 
RESONANCES 

RAMAN 
ESONANCES 

-I 

w2 -Web 

Fig. 8. Strong-field effect on the CARS resonance The strong 
field is frsed on the a - c transition. The four-level system is 
defined by the parameter values: rab = 0.1. ??,, = 0.001. rad 
= 0.2, I&= 0.101, l- &, = 0.3, r& = 0.201, Qa = 0.2, -,cb = 

0.001 and 7ca = 0.001. This choice corresponds to a situation 

encountered in pentacene (u’ = 747 cm-‘. u = 756 cm-‘) 
under the assumption of pure radiative damping. 

L I 

Fig. 9. Strong-field effect on the CSRS resonance. The same 
four-level model as in fig. 8 is used but with rhc fised strong 
field detuned from the a - c resonance by 1 cm-‘. 

%o- w2 

In the limit of all fields being weak the conventional CSRS susceptibility [ 1 l] is recovered in addition to the ef- 
fects due to higher-order susceptibilities including one dependent on feeding given in eq. (8 1): 

xr%RS = -&pad&d pbc 
1 

a A* + 
1 1 - (SO) a 

ad ab bc ‘ad Acd Ak G4dAL 

Eq. (80) displays the three CSRS terms corresponding to the three diagrams that normally arise by means of an 
iterative solution of the density operator. This combination of three terms simplifies algebraically when all the 
pure dephasing effects vanish leading to resonances at w4 - wI! = wba and w4 = w&_ In the presence of pure de- 
phasing two additional resonances occur at w4 - o-) = wdc and tic0 = 2w2 - a_+_ In the presence of a strong 
fieid, eq. (79) is the proper one to use and this has a% four resonances as simulated in fig. 9. With increasing Geld 
strength of the strong field the resonances at web and wdc appear as power-induced extra resonances. The relative 
intensities of these four resonances are strongly dependent on the choice of the values for the feeding parameters. 
but the linewidths remain insensitive_ 

9. Conclusions 

it was shown that the resonant non-linear response of certain multilevel systems can be calculated exactly 
(within the RWA) even when one of the ingoin, 0 fields has unlimited strength. The non-perturbative approach that 

was developed allowed us to obtain explicit results for many common non-linear optical spectroscopic experiments. 
The method should have wide applicability, and even in the case all the fields are weak provides a rapid system for 

generating the formulas usually obtained by iterative solution of the Liouville equation. 
A number of important new results is obtained from the exact approach: In the presence of a strong field the 
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dynamical parameters of the system that determine the response are more clearly evaluated than in the weak-field 
case, whenever the weak field is scanned. Scanning the strong field yields information mainly about the light 
source. The extra resonances that are usually assumed to occur only in the presence of pure dephasing processes 
in the medium, are seen to occur by virtue of the finite strength of the strong field. Exact (RWA) formulas for the 
CARS and CSRS in four-level systems are given. 

The method developed in this paper can be applied to a variety of experimental situations including CARS and 
CSRS, as mentioned above, polarization spectroscopy, other four-wave resonant processes, “second-order” pro- 
cesses such as sum- and difference-frequency generation in three-level systems. Other situations such as four-wave 
mixing in two- and three-level schemes can be evaluated using the present techniques applied in a stepwise manner. 
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Appendix A 

In this appendix it is shown that the operator J?, corresponding to the matrix X defined in eq. (26), has the 
form: 

X=i(A +2--ie). (Al) 

where i,A, J! and p are superoperators. The matrix elements of i are shown to be given by: 

&v.ap = -i4p,6,,6,p + -yp,G,,S,p + i6,p IU@ +- 0~) - i&,,IU# + V) . WI 

According to their usual definitions [23-251 superoperators, 2, act on operators, p, according to the prescription 

The product of two superoperators is defined as 

The unitary transformation defined through eq. (14) can be written as a superoperator c, so that 

p=Llp, 

with 

G&P = 6,,6,, exp[i(A, - A,)[] _ 

It follows that 6 has the form i A a, with 2 given by 

A~,,p=6,,6,8(A,-A.)=6,,6,ps,,0j - 
. 

Having found u, the equation of motion for p can be found in the required form from eq. (A3): 

S=~~+~~=iAIjp+U(id:+i3p. 

Therefore 

$=(iA +iz+F)p’=*‘?j, 

(A3) 

(A4) 

W) 
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where the transformed Liouville operator F= CdJfi-‘. The niatrh elenlents of 2 now follow from the definitions 

of the superoperator elements (A4) along with 

and 

Appendix B 

TO prove that the superoperator matrix X cannot be inverted and hence eq. (23) has a non-rrivial solution, let 

US sum the rows of X corresponding to the diagonal elements of 5. This yields a vector Z with elements 

where we have used eq. (5) in the last step. 
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