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Practicality of time-optimal two-qubit Hamiltonian simulation
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What is the time-optimal way of using a set of control Hamiltonians to obtain a desired interaction? Vidal,
Hammerer, and Cirac@Phys. Rev. Lett.88, 237902~2002!# have obtained a set of powerful results character-
izing the time-optimal simulation of a two-qubit quantum gate using a fixed interaction Hamiltonian and fast
local control over the individual qubits. How practically useful are these results? We prove that there are
two-qubit Hamiltonians such that time-optimal simulationrequires infinitely many steps of evolution, each
infinitesimally small, and thus is physically impractical. A procedure is given to determine which two-qubit
Hamiltonians have this property, and we show that almost all Hamiltonians do. Finally, we determine some
bounds on the penalty that must be paid in the simulation time if the number of steps is fixed at a finite number,
and show that the cost in simulation time is not too great.
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I. INTRODUCTION

A central question of quantum information science is
determine the minimal time required to perform a quant
computation using a set of physical resources known to
universal for computation. Our understanding of what
sources are universal for computation is very well develop
and it is known@1# that when fast local control is available
any unitary dynamics capable of generating entangleme
universal for computation. However, the question of us
these resources in a time-optimal fashion is, by comparis
understood relatively poorly.

This paper considers a particular simplified setting, tha
time-optimal simulation of two-qubit unitaries using a fixe
interaction Hamiltonian and arbitrary fast local control. A
bitrary fast local control means that the evolution of the
teraction Hamiltonian may be interrupted by arbitrary sing
qubit operations, and that these operations take no tim
perform. This assumption corresponds to certain experim
tal setups where single-qubit operations are performed o
much faster time scale than joint operations. Hamme
Vidal, and Cirac@2,3# have given a construction for thi
simulation, as well as an elegant expression for the minim
achievable simulation time.

The simulation scheme of Hammereret al.uses, in gen-
eral, an infinite number of steps to achieve time optimal
That is, the interaction Hamiltonian is, in general, interrup
an infinite number of times by local operations, and the ti
between each interruption is infinitesimal. A simulatio
scheme requiring infinitely many time steps is not practi
for at least two reasons. First, the original premise that lo
operations can be performed in zero time is no longer vali
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one must perform infinitely many of them. Second, the
fects of noise on such a simulation will overwhelm the i
tended coherent dynamics. The purpose of our paper i
ask, first, whether infinitely many time steps are actua
required, in general, for time-optimal simulation? We wi
find that the answer is yes. Indeed, we will show that
overwhelming majority of two-qubit interaction Hamilto
nians have this property. Given this, we then address
question of determining how close to time optimal a simu
tion can get, given that one demands a simulation using o
a finite number of time steps.

The paper is structured as follows. In Sec. II we revie
results about two-qubit time-optimal simulation in the lim
of fast control. In Sec. III we provide a procedure for dete
mining which two-qubit Hamiltonians require infinitesima
time steps when used in this setting. Finally, in Sec. IV
quantify the sacrifice that must be made to time-optima
when one insists on having a simulation using a finite nu
ber of time steps. Section V concludes the paper.

II. PRELIMINARIES

The purpose of this section is to introduce notation and
review some concepts and results associated with ti
optimal two-qubit simulation in the limit of fast local con
trol. We end the section with an introduction to the idea o
‘‘lazy’’ two-qubit Hamiltonian.

A. Notation

Up to rescaling of the ground-state energy, an arbitr
two-qubit Hamiltonian can be parametrized as follows:

H5I ^ ~aW •sW !1~bW •sW ! ^ I 1 (
i , j 51

3

Mi j s i ^ s j , ~1!

whereaW [(ax ,ay ,az) andbW [(bx ,by ,bz) are real three vec-
tors, M is a 333 real matrix, and sW 5(s1 ,s2 ,s3)
©2003 The American Physical Society03-1

https://core.ac.uk/display/15004522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


he
-

l-
is

a
n

o

a

to

e
a

e
of

o

tio
e

or
-
is
o-

,

tely

m-
he

can

a-

rs?
dix

f

cal
ni-
the

l
l-

nts
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5(X,Y,Z) is the vector of Pauli operators. With respect to t
computational basis$u0&,u1&%, the Pauli operators are repre
sented by the following matrices:

X5F0 1

1 0G , Y5F0 2 i

i 0G , Z5F1 0

0 21G . ~2!

When all the entriesMi j are zero we say that the Hami
tonian is local. Otherwise we say that the Hamiltonian
nonlocal. We say that a unitaryU is local if it can be ex-
pressed as a tensor productU5A^ B of single-qubit unitar-
ies. Otherwise we say the unitary is nonlocal. We sh
henceforth restrict the single-qubit unitaries to be eleme
of the special unitary group SU~2! ~i.e., the group of 232
unitaries having unit determinant!.

B. Time-optimal simulation

A simulation scheme to approximate an arbitrary tw
qubit unitaryU using a fixed HamiltonianH and arbitrary
local unitaries may, without loss of generality, be written
follows:

U5~AN^ BN!e2 iHt N~AN21^ BN21!e2 iHt N21

•••~A1^ B1!e2 iHt 1~A0^ B0!, ~3!

where the parameterstn are non-negative. That is, in order
achieve the desired dynamicsU we can applyH as many
times as we wish for arbitrary lengths of time, interspers
with arbitrary operations on the individual qubits. We occ
sionally refer to Eq.~3! as being acircuit for U. It is worth
noting that the assumption thatH contains noI ^ I term and
that single-qubit unitaries are in SU~2!, implies thatU is in
SU~4!. These restrictions entail no loss in generality, as th
simply take advantage of the fact that the global phase
unitary operator is irrelevant.

Corresponding to the simulation Eq.~3! is the interaction
time, which we define to be the total timet11•••1tN for
which the interaction Hamiltonian is applied. For a givenU
andH, there are many possible circuits each giving rise t
simulation ofU. Over this range of possible circuits forU,
there is a corresponding range of values for the interac
time. A circuit which achieves the minimum interaction tim
for a givenU and H is said to betime optimal. We define
CH(U) to be the minimum achievable interaction time f
simulatingU usingH. Reference@2# gives a simple expres
sion for CH(U), in the two-qubit scenario. To discuss th
result, we first briefly review the canonical form of a tw
qubit unitary and two-qubit Hamiltonian operator.

C. The canonical form of U and H

For any unitaryUPSU(4) there exists acanonical de-
composition@4,5#

U5~C1^ D1!e2 i (u1X^ X1u2Y^ Y1u3Z^ Z)~C2^ D2!, ~4!

whereC1 , D1 , C2, andD2 are single-qubit special unitaries
andu1 , u2, andu3 are unique real numbers satisfying
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p/4>u1>u2>uu3u>0. ~5!

Although 15 parameters are needed in order to comple
specify an arbitrary two-qubit unitaryUPSU(4), the ca-
nonical decomposition shows us that thenonlocal behavior
of U can be characterized in terms of only three para
eters,u1 , u2 and u3. We call these three parameters t
canonical-form parametersof U and the operatorUuW

[e2 i (u1X^ X1u2Y^ Y1u3Z^ Z) the canonical formof U.
The local partsC1 , D1 , C2, and D2 of the canonical

decomposition do not affect the interaction time, as they
be trivially included in the first and last steps,A0^ B0 and
AN^ BN , of a simulation. Therefore, the canonical-form p
rameters are all we need to know aboutU in order to calcu-
late the minimum required interaction time for Eq.~3!.

How does one calculate the canonical-form paramete
For completeness, we review the method given in Appen
A of Ref. @2#.

In the following it will be helpful to take advantage o
properties of the so-calledmagic basis@6#

u1&52
i

A2
~ u01&1u10&),

u2&5
1

A2
~ u00&1u11&),

u3&52
i

A2
~ u00&2u11&),

u4&5
1

A2
~ u01&2u10&).

It is known@6# that, when expressed in the magic basis, lo
two-qubit special unitaries are real, and canonical-form u
taries are diagonal. This means that in the magic basis
canonical decomposition looks likeU5RDS, whereR andS
are real orthogonal matrices, andD is diagonal. The diagona
elements ofD can be easily written in terms of the canonica
form parameters ofU: if we define

w15u11u22u3 ,

w25u12u21u3 ,

w352u11u21u3 ,

w452u12u22u3 , ~6!

then the diagonal elements ofD aree2 iw1, e2 iw2, e2 iw3, and
e2 iw4. Note that Eq.~6! together with Eq.~5! implies that

3p

4
>w1>w2>w3>w4>2

3p

4
. ~7!

We have thatUTU5STDRTRDS5STD2S, so the eigen-
values ofUTU are just the squares of the diagonal eleme
of D. That is,
3-2
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eig~UTU !5$e22iw1,e22iw2,e22iw3,e22iw4%. ~8!

To determine the canonical-form parameters for a part
lar U, we first calculate the eigenvalues ofUTU ~where the
transpose is taken in the magic basis!, then derivew j via Eq.
~8!, and finally solve Eqs.~6!. A word of caution: the task of
derivingw j from e22iw j is not as trivial as it may first seem
The problem is that, in general, there is no guarantee tha
values22w j will lie in any particular branch of the loga
rithm function. So, naively taking theargumentof e22iw j

will not necessarily give you22iw j . A relatively simple
procedure exists to correct for this problem@7#. However, in
the context of Sec. III we will see later that taking the log
rithm of e22iw j along the standard branch of the logarith
function will suffice to evaluate22w j .

Closely related to the canonical form for a two-qubit un
tary is the canonical form for a two-qubit Hamiltonian. It
discussed in Sec. V A of Ref.@8#, where it is referred to as
the normal form. Given the purely nonlocal part

HI5 (
i , j 51

3

Mi j s i ^ s j ~9!

of a HamiltonianH, when it is expressed in the form of Eq
~1!, the canonical form ofH is defined to be the uniqu
Hermitian operator

HaW 5a1X^ X1a2Y^ Y1a3Z^ Z, ~10!

which satisfies

HI5~A^ B!HaW ~A†
^ B†! ~11!

for some local unitaryA^ B, wherea1>a2>ua3u. The ex-
istence and uniqueness of this canonical form is establis
in Ref. @8#, where it is shown thata1 , a2, and ua3u are the
singular values of the matrixM, and sgn(a3)5sgn(detM ).

The canonical form of a HamiltonianH encapsulates the
nonlocal behavior of the evolution ofH for very small time
steps. This can be seen as follows. From Secs. III B and
of Ref. @8# we can write

e2 iHt5~A^ B!e2 iH aW t~C^ D !1O~ t2!

5~A^ B!e2 i t (a1X^ X1a2Y^ Y1a3Z^ Z)~C^ D !

1O~ t2! ~12!

for some local unitariesA, B, C, andD. To ordert, the evo-
lution of H is given by a unitary having canonical-form p
rametersta1 , ta2, andta3.

D. Expression for CH„U…

We are almost ready to review the expression forCH(U)
given in Refs.@2,3#. Before we do so we review the conce
of special majorization. Special majorization describes a pa
ticular type of partial ordering of three vectors. Its use
Refs. @2,3# allows certain results to be described very su
cinctly. To define special majorization, it is necessary to fi
introduce the idea of aspecial-orderedthree-vector. Given a
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real vector bW 5(b1 ,b2 ,b3), the correspondingspecial-

orderedvectorbW s is defined as follows. The absolute valu
of the components ofbW s are given by the absolute value o
the components ofbW rearranged in nonincreasing order. Th
is, ub j

su5ubp( j )u for the permutationp( j ) that gives ub1
su

>ub2
su>ub3

su. The definition is completed by specifying tha
b1

s andb2
s are non-negative, and thatb3

s has the same sign a

the productb1b2b3. Then,bW is said to be special majorize
by gW ~denoted bybW asgW ) if

b1
s<g1

s ,

b1
s1b2

s2b3
s<g1

s1g2
s2g3

s , ~13!

b1
s1b2

s1b3
s<g1

s1g2
s1g3

s ,

wherebW s andgW s are the special-ordered versions ofbW andgW .
We now state the following result from Refs.@2,3# with-

out proof. LetH be a two-qubit Hamiltonian having canon
cal formHaW and letU be a two-qubit unitary having canon
cal form UuW . ThenCH(U), the minimum time required to
simulateU using H, is given by the minimum value oftS
>0 such that either

uW asaW tS ~14!

or

uW 1S 2
p

2
,0,0DasaW tS ~15!

holds. For a detailed derivation see Refs.@2,3#.

E. The lazy Hamiltonian

We now introduce the central concept of a lazy Ham
tonian. For a given two-qubit HamiltonianH, we define a
function t(t) as follows:

t~ t !5CH~e2 iHt !. ~16!

That is,t(t) is the minimum total time for which the Hamil
tonianH must be applied, when it is being used together w
arbitrary local unitaries, to simulate its own actione2 iHt .
Such a simulation would be of the form

e2 iHt5~AN^ BN!e2 iHt N~AN21^ BN21!e2 iHt N21

•••~A1^ B1!e2 iHt 1~A0^ B0!. ~17!

The trivial ‘‘simulation’’ having the single stepe2 iHt has
an interaction time oft. Thus, the minimum achievable in
teraction time will be no greater thant:

t~ t !<t. ~18!

Under what circumstances willt(t) be less thant? It turns
out that this question is very closely linked to our main qu
tion: what are the circumstances under which a time-optim
simulation will require infinitesimal time steps?
3-3
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Consider the class of two-qubit Hamiltonians having t
following property:

t~ t !,t ;t.0. ~19!

We shall say that a Hamiltonian is lazy if it is nonlocal a
satisfies Eq.~19!.

Proposition 1. If a Hamiltonian is lazy, then the time
optimal simulation of any two-qubit nonlocal unitaryU us-
ing H requires infinitely many time steps.

Proof. Suppose there exists a time-optimal simulati
scheme, of the form of Eq.~3!, for a nonlocalU using a lazy
HamiltonianH, where the number of time stepsN is finite.
At least one of thetn must be nonzero, otherwise the sim
lation would be unable to produce nonlocal dynamics. F
such a nonzerotn , consider the corresponding factore2 iHt n

in the simulation. SinceH is lazy, there exists a simulatio
for e2 iHt n having an interaction timeless than tn . If we
substitute such a simulation fore2 iHt n back into the simula-
tion for U, then the new simulation forU now has a lesse
interaction time than it did before. However, this contradi
the assumption that the original simulation was time optim
Hence, the premise that the original simulation had fin
time steps is false. Thus, we conclude that any lazy Ham
tonian will require infinitesimal time steps when used for t
time-optimal simulation of any nonlocal two-qubit unitaryU.

To show that a particularH is lazy, it is sufficient to show
thatt(t),t for all t in some interval (0,e) for any positivee.
To see this, note that if there is a simulation fore2 iHt with
interaction timets,t, then clearly there exists a simulatio
for e2 iHnt with interaction timetsn, for any positive integer
n. Thus,t(t),t implies thatt(nt),nt for all positive inte-
gersn. So, if t(t),t for all tP(0,e), thent(t),t for all t
.0.

III. GENERAL PROCEDURE

Which two-qubit Hamiltonians are lazy? We have seen
the preceding section~Proposition 1! that lazy two-qubit
Hamiltonians require infinitely many time steps if they are
be used for time-optimal control, and thus are impractical
this section we provide a simple set of sufficient conditio
for a Hamiltonian to be lazy, expressed in terms of the
rameters of the Hamiltonian. The parametrization in Eq.~1!
is more general than it needs to be for this purpose. We
simplify matters by using the fact that a HamiltonianH is
lazy if and only if (A^ B)H(A†

^ B†) is lazy, whereA andB
are any single-qubit unitaries. This is a consequence of
fact that e2 iHt has the same canonical form a
e2 i (A^ B)H(A†

^ B†)t. Thus, without loss of generality w
choose to only consider Hamiltonians where the purely n
local part is in canonical form, that is,

H5I ^ ~aW •sW !1~bW •sW ! ^ I 1(
j 51

3

a js j ^ s j , ~20!

wherea1>a2>ua3u.
04230
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Recall from Sec. II E that we define a Hamiltonian to
lazy if t(t),t over some interval (0,e). Suppose we could
find a Taylor series expansion

t~ t !5t (0)1t (1)t1t (2)t21••• ~21!

for t(t) in the variablet. Thus,

t~ t !2t5t (0)1~t (1)21!t1t (2)t21••• . ~22!

Then, because we can assumet is small, the corresponding
Hamiltonian is lazy if and only if the first nonzero item in th
list t (0), (t (1)21), t (2), t (3), . . . is negative. Our procedur
involves finding expressions for the first few items in th
list, in terms of the parametersaW , bW , and aW of the Hamil-
tonian. We then find the conditions under which each expr
sion will be negative. We find that in factt (0)5t (1)21
5t (2)50 always, and sot (3) is the first term that may be
negative. Accordingly, in the analysis that follows we co
sider the behavior oft(t) up to ordert3, so as to arrive at
some nontrivial conditions for a Hamiltonian being lazy.

A. Procedure to find the Taylor coefficients oft„t…

We seek expressions for the Taylor coefficients oft(t),
namely,t (0), t (1), t (2), andt (3). The expression forCH(U)
involves the canonical-form parametersu1 , u2, andu3 of the
unitary U. So we first try to find expressions for th
canonical-form parametersu1(t), u2(t), and u3(t) of the
unitarye2 iHt . From Sec. II C, the canonical-form paramete
can be expressed in terms of parametersw1 , . . . ,w4, where

eig~e2 iH Tte2 iHt !5$e2 i2w1, . . . ,e2 i2w4%, ~23!

with the transpose taken in the magic basis. Thus,

wW ~ t !5$2 1
2 arg@eig~e2 iH Tte2 iHt !#1nW p%↓, ~24!

where the vector of integersnW accounts for the ambiguity in
taking the argument, and where the down-arrow sorts in
creasing order so that we are in agreement with the orde
of thew j in Eq. ~7!. However, since we are only interested
the behavior over a small intervaltP@0,e#, it turns out that
we can takenW 50. This can be seen as follows. From th
discussion at the end of Sec. II D, for smallt the canonical-
form parameters ofe2 iHt will be small. Thus, the parameter
w1 , . . . ,w4 will also be small. But this can only be the cas
when nW 50. ~A more rigorous proof of this fact is easil
deduced from the procedure for finding the canonical-fo
parameters described in Ref.@7#.! Thus,

wW ~ t !5$2 1
2 arg@eig~e2 iH Tte2 iHt !#%↓ ~25!

for t in some interval@0,e#.
Now, it is possible to write

e2 iH Tte2 iHt5eK(t), ~26!

whereK(t) is given by the Campbell-Baker-Hausdorf seri
~for a derivation see, for example, Ref.@9#!
3-4
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K~ t !52 i t ~HT1H !1 1
2 ~2 i t 2!@HT,H#

1 1
12 ~2 i t !3~†HT,@HT,H#‡1†H,@H,HT#‡!

1•••, ~27!

where@A,B#5AB2BA. Thus, fortP@0,e# we can write

wW ~ t !5$2 1
2 arg@eig~eK(t)!#%↓ ~28!

5S 2
1

2i
eig@K~ t !# D ↓

. ~29!

From Theorem 1.10 of Ref.@10#, a normal-valued opera
tor function that can be expressed as a power series

T~ t !5T(0)1T(1)t1T(2)t21••• ~30!

has eigenvalues which are holomorphic functions oft. Thus,
the entries of the vector2(1/2i )eig(K(t)) can be expresse
as holomorphic functions oft, and the components ofwW (t)
are therefore continuous piecewise-holomorphic function
t, over some interval@0,e#. Approximating K(t) to some
order in t will give the same order of approximation fo
wW (t):

wW ~ t !1O~ tn!5S 2
1

2i
eig@K~ t !1O~ tn!# D ↓

. ~31!

DefineK̃(t) to be the first three terms in the expansion
K(t) in Eq. ~27!. That is,

K̃~ t !52 i t ~HT1H !1 1
2 ~2 i t 2!@HT,H#

1 1
12 ~2 i t !3~†HT,@HT,H#‡1†H,@H,HT#‡!. ~32!

Then, if we define

lW ~ t !52
1

2i
eig@K̃~ t !#, ~33!

we have

wW ~ t !5@lW ~ t !#↓1O~ t4!. ~34!

We can find the first four Taylor coefficients of each comp
nent oflW (t) in the following way. Each component oflW (t)
satisfies the characteristic equation
04230
f

f

-

f ~ t !5det@K̃~ t !12il~ t !#50. ~35!

We can substitute a Taylor series forl(t):

f ~ t !5det@K̃~ t !12i ~l (0)1l (1)t1 . . . !#50. ~36!

Since Eq.~36! must be true for a range of values oft, then
all coefficients in a Taylor series forf (t) must be zero. Find-
ing expressions for the coefficientsf ( j ), and solving the
equations f ( j )50, will give us the coefficientsl (0),
l (1), . . . , etc. Note that when we wish to find a particul
term f ( j ), we need only include terms in the expansion
l(t) in Eq. ~36! to ordert j .

How can we use the Taylor coefficients oflW (t) to find the
Taylor coefficients ofwW (t)? Does the ordering operation i
Eq. ~34! present a difficulty? Not really. Say that we kne
the Taylor series for each of the four function
l1(t), . . . ,l4(t). We would simply order these vector com
ponents with respect to the zero-order Taylor coefficien
l1

(0)>l2
(0)>l3

(0)>l4
(0) . If it happened that none of thel j

(0)

were equal, that is,l1
(0).l2

(0).l3
(0).l4

(0) , then Eq.~34!
would immediately imply that

wW ~ t !5lW ~ t !1O~ t4! ~37!

for t in some interval@0,e#. That is, for smallt, wW (t) is equal
to lW (t) up to ordert3, where the components oflW (t) are
arranged so that the zeroth Taylor coefficients are in decr
ing order. In the special case where some of the zero-o
coefficientsl1

(0) ,l2
(0) ,l3

(0) ,l4
(0) are equal, then we break th

tie by considering the first-order coefficients, and if those
equal we consider the next highest order and so on. In w
follows, we will use the ordering scheme as described in t
paragraph, so that we may use Eq.~37! instead of Eq.~34!.

B. Procedure to find the Taylor coefficients of the components
of l¢ „t…

In this section we describe the calculation of the Tay
coefficients of the components oflW (t).

In the magic basis, the HamiltonianH in Eq. ~20! reads
H5S a12a21a3 2 ia32 ib3 2 ia21 ib2 2 ia12 ib1

ia31 ib3 2a11a21a3 ia12 ib1 2 ia22 ib2

ia22 ib2 2 ia11 ib1 2a12a22a3 ia32 ib3

ia11 ib1 ia21 ib2 2 ia31 ib3 a11a22a3

D . ~38!
3-5
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The components ofK̃(t) in the magic basis are found wit
the aid of the computer algebra systemMAPLE. This is
straightforward in any of the standard computer algebra s
tems, and the specific form is both complex and not parti
larly illuminating, so we will not reproduce the componen
of K̃(t) here. Note that each component is a third-order po
nomial in t.

Next, we find expressions forf (0), . . . ,f (6). To find f (n),
we evaluate the expressionf (t) in Eq. ~36! using MAPLE,
including terms in the seriesl (0)1l(1)t1••• up to at least
ordertn. Then, f (n) is given by the coefficient of thetn term
in this expression. Explicit expressions forf (n) will not be
given here as they are rather lengthy and not illuminati
They are polynomials in the parameters of the Hamiltoni

The next step is to solve the equationsf (n)50, n
50, . . . ,6, viaMAPLE. The results are as follows.

~a! Solving f (0)50 yieldsl (0)50. That is, the zero-orde
Taylor coefficients of each component oflW (t) are zero.
Thus, from Eqs.~37! and ~6! we haveuW (0)50.

~b! Solving f (1)50, f (2)50, andf (3)50 provides no new
information aboutl (n).

~c! Solving f (4)50 yields four solutions, one for eac
component inlW (t). We write them in nonincreasing order a
follows:

l1
(1)5a11a22a3 ,

l2
(1)5a12a21a3 ,

l3
(1)52a11a21a3 ,

l4
(1)52a12a22a3 . ~39!

This givesuW (1)5(a1 ,a2 ,a3).
~d! Solving f (5)50 givesl (2)50. Thus,uW (2)50.
~e! Solving f (6)50 gives four solutions tol (3), so long as

we assumea1.a2.a3. Each of the four solutions forl (3)

correspond to one of the four solutions tol (1) ~which were
substituted in turn!. Thus, we are able to correctly associa
each of the four solutions to a particular component of
ordered vectorlW (t). For the sake of brevity we will no
reproduce the expressions forlW j

(3) . Rather, we just provide
the resulting expressions foru j

(3) :

u1
(3)5 1

6 @2a1~a2
21a3

21b2
21b3

2!12a2a3b312a3a2b2#,

u2
(3)5 1

6 @2a2~a1
21a3

21b1
21b3

2!12a1a3b312a3a1b1#,

u3
(3)5 1

6 @2a3~a1
21a2

21b1
21b2

2!12a1a2b212a2a1b1#.
~40!

The special casesa15a25a3 , a15a2.a3, and a1
.a25a3 provide different~and rather more complicated!
solutions forl j

(3) compared with the above. Arriving at th
solution in these cases requires solving up tof (10)50. We
will not write out these results explicitly.

Thus, we have
04230
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uW ~ t !5aW t1uW (3)t31O~ t4! ~41!

for t in some interval@0,e#. uW (3) is given in Eq.~40!, except
in the special cases noted above.

C. Conditions for laziness

From Sec. II C of Ref.@2#, the expression forCH(U)
takes a simpler form when we haveu11uu3u<p/4. In this
special case,CH(U) is given by the minimum value ofts
such that

uW asaW ts , ~42!

where againuW is the vector of canonical-form parameters
U and aW is the vector of canonical-form parameters ofH.
This special case certainly holds for the canonical-form
rameters ofe2 iHt when t is sufficiently small. In this case
Eq. ~42! is equivalent to

u1<a1ts ,

u11u22u3<~a11a22a3!ts ,

u11u21u3<~a11a21a3!ts , ~43!

which is equivalent to

u1

a1
<ts ,

u11u22u3

a11a22a3
<ts ,

u11u21u3

a11a21a3
<ts . ~44!

Thus,

CH~U !5maxH u1

a1
,

u11u22u3

a11a22a3
,

u11u21u3

a11a21a3
J . ~45!

Given Eq.~41!, we have

t~ t !5t1t (3)t31O~ t4! ~46!

for small t, wheret (3) is given by

t (3)5maxH u1
(3)

a1
,
u1

(3)1u2
(3)2u3

(3)

a11a22a3
,
u1

(3)1u2
(3)1u3

(3)

a11a21a3
J .

~47!

It is clear that whenevert (3),0, the Hamiltonian is lazy. It
is also clear thatt (3) is never greater than zero, because t
would imply t(t).t, a contradiction. We find below the
solutions~in terms of the parameters of the Hamiltonian! for
t (3)50; all Hamiltonians which do not belong to this solu
tion set are guaranteed to be lazy. Note, however, that
complement of this solution set does not entirely characte
the class of lazy Hamiltonians, since there may be Hami
3-6
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nians in this set that are lazy due to higher-order Tay
coefficients that are negative. So our results may not fu
characterize the set ofall lazy Hamiltonians.

Let

B15u1
(3) , ~48!

B25u1
(3)1u2

(3)2u3
(3) , ~49!

B35u1
(3)1u2

(3)1u3
(3) . ~50!

The coefficientt (3) is zero if and only if at least one ofBj is
zero. It is straightforward to show that fora1.a2.a3,

B150⇔a25a35b25b350, ~51!

B250⇔a152b1 , a252b2 , a35b3 , ~52!

B350⇔a15b1 , a25b2 , a35b3 . ~53!

We have arrived at the main result of this paper.
Result 1. Any Hamiltonian of the form of Eq.~20! for

which a1.a2.a3 and for which none of the three cond
tions ~1! a25a35b25b350, ~2! a152b1 ,
a252b2 , a35b3, ~3! a15b1 , a25b2 , a35b3 hold, is
lazy. Such Hamiltonians will therefore need to be appl
infinitely many times when used in a time-optimal simu
tion of a nonlocal two-qubit unitary.

These conditions obviously make it very easy to gene
examples of lazy Hamiltonians, and imply that almost
two-qubit Hamiltonians are lazy. Note that the special ca
a15a2.a3 , a1.a25a3, and a15a25a3 yield some-
what more complicated conditions for a Hamiltonian to
lazy. These conditions are complex and not very illumin
ing, but can be obtained using techniques similar to th
described above, so we will not reproduce them here.

IV. USING LAZY HAMILTONIANS IN FINITE TIME STEPS

The results of the preceding section show that almos
two-qubit Hamiltonians are lazy. This means that, in a sim
lation circuit, infinitesimal time steps must be employed
achieve time optimality. We now show that, despite this
quirement, if finite time steps are used then the correspo
ing sacrifice of interaction time is not very large—only
small relaxation from strict time optimality is required
order to reduce the number of time steps to something p
tical.

To make our results concrete, we consider the case w
the unitary being simulated is the controlled-NOT ~CNOT!
gate. Similar conclusions can be reached in the general
by following a similar argument to as that below, and maki
use of the results of Ref.@11#. It can be shown@2# that the
minimum time for simulating aCNOT gate is CH(CNOT)
5p/4a1, wherea1 is the largest canonical-form paramet
of the interaction Hamiltonian. WhenH is lazy, can we con-
struct a simulation using a finite number of time steps s
that the total interaction time is not much larger than
optimum CH ~CNOT!? Such a scheme is given in Ref.@12#,
whereby an arbitrary nonlocal two-qubit unitaryU is applied
04230
r
y

d

te
l
s

-
e

ll
-

-
d-

c-

re

se

h
e

a finite number of times together with local unitaries to sim
late a CNOT gate. Using the scheme in Ref.@12#, if U has
largest canonical-form parameteru1 such that

n5
p

4u1
~54!

is an integer greater than one, then the scheme can be us
simulate aCNOT gate by applyingU exactly n times. Of
course, we are interested in the case whenU5e2 iHD, that is,
U is given by the evolution of an interaction Hamiltonia
over a timeD. The total interaction time would then be

ts5nD5
pD

4u1~D!
. ~55!

From the preceding section, the functionu1(D) can be writ-
ten, for smallD, as

u1~D!5a1D1u (3)D31O~D4!. ~56!

Thus, for smallD,

ts5
p

4a11u1
(3)D21O~D3!

~57!

5CH~CNOT!2
pu1

(3)D2

16a1
2

1O~D3!. ~58!

This shows that to simulate aCNOT gate by applying a lazy
interaction Hamiltonian in a~finite! number of small time
steps, then the penalty in the total interaction time, as co
pared with the optimum, is only of the order ofD2.

As an example, consider a specific interaction Ham
tonianH50.1X^ X1I ^ Z. Using the results of the preced
ing section it can easily be verified thatH is lazy. The graph
of u1(D) as a function ofD is shown in Fig. 1. We choose
range of positive integer values ofn, and for eachn we
calculate how long the corresponding time step (D) is by
numerically solving

u1~D!5
p

4n
. ~59!

No solution to Eq.~59! exists for n,8. This can be seen
from the fact thatp/(437)50.112 . . . , which is greater
than the maximum value thatu1(D) takes. Forn equal to 8

FIG. 1. Canonical-form parameteru1(D) of the unitarye2 iHD,
whereH50.1X^ X1I ^ Z.
3-7
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or greater, a correspondingD can be found. Finally, the in
teraction timets required to simulate theCNOT gate is calcu-
lated via Eq.~55!. The results are shown in Fig. 2. Th
dashed line is the optimal time,CH(CNOT)55p/2. The re-
sults clearly show a near-optimal simulation with relative
small numbers of time steps. For 20 time steps, the t
interaction time is just 2.8% greater than the optimal.

FIG. 2. Total interaction time as a function of the number
simulation steps, for the simulation ofCNOT gate using the Hamil-
tonianH50.1X^ X1I ^ Z.
fs

t

n,

-

in

.
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V. CONCLUSIONS

We have defined a class of lazy two-qubit Hamiltonian
those which can simulate themselves faster with the aid
fast local control than with uninterrupted evolution. When
lazy Hamiltonian is used in the time-optimal simulation
any nonlocal two-qubit unitary, we have shown that t
simulation will require an infinite number of steps, and th
will be impractical. We have derived a simple set of suf
cient conditions enabling us to prove that a given Ham
tonian is lazy. This set of conditions implies that almost
two-qubit Hamiltonians are lazy. Finally, we have shown th
only a rather small sacrifice in the simulation time needs
be made in order to use a lazy Hamiltonian in a finite-s
simulation.
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