1,053 research outputs found

    Efficient single-step rapeseed oleosome extraction using twin-screw press

    Get PDF
    Oil in seeds is encapsulated in oleosomes, which are small lipid droplets surrounded by a phospholipid-protein monolayer. The currently proposed method to extract intact oleosomes includes mixing seeds with alkaline media in a ratio 1:7, batch blending and filtering. In this work, we propose the use of a twin-screw press to perform the oleosome extraction at pH 7. The results show that similarly to blender extraction, twin-screw press recovers ⁓60% of the oleosomes; however the twin-screw press is able to achieve this yield even when just pure water is used. While in the blender extraction, the yield depends on ionic strength and pH of the extraction media, when using twin-screw press, the oleosome extraction yield predominantly depends on the mechanical forces. These shear forces are able to break the cell walls and release the cellular material while maintaining the integrity of oleosomes. The oleosomes extracted with twin-screw press have similar characteristics than those obtained by the blending process. Overall, twin-screw press seems a promising alternative to scale-up the oleosome aqueous extraction, especially as neutral pH can be used and the water usage is significantly reduced. Additionally, preliminary results showed that the yield can increase up to 90 wt%.</p

    Leveraging the Use of Mobile Applications to Increase Knowledge Retention in a Classroom Lecture

    Get PDF
    This research sought to determine if the use of mobile applications (e.g., iPhone® apps) had an impact on students’ ability to learn new material. A control group was compared against a group of students who used mobile devices during a statistics lecture. Students participated separately in a lecture followed by a period of either pencil and paper only or technology-assisted examples. They then took a quiz over the material. The data collected shows that the app group outperformed the control group on every question and scored 16% higher overall. A post-experimental survey found that participants in the app group felt strongly that mobile applications helped them understand the new concepts more clearly and were more confident in their ability to quickly learn this new material than the control group. Overall, this research demonstrates that technology-assisted learning positively impacts students’ learning. It also suggests that technology is changing the way people think and learn.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Ultrafast photoinduced reflectivity transients in (Nd0.5Sr0.5)MnO3(Nd_{0.5}Sr_{0.5})MnO_3

    Full text link
    The temperature dependence of ultrafast photoinduced reflectivity transients is reported in Nd0.5_{0.5}Sr0.5_{0.5}MnO3_{3} thin film. The photoinduced reflectivity shows a complex response with very different temperature dependences on different timescales. The response on the sub-ps timescale appears to be only weakly sensitive to the 270K-metal-insulator phase transition. Below 160\sim 160 K the sub-ps response displays a two component behavior indicating inhomogeneity of the film resulting from the substrate induced strain. On the other hand, the slower response on the 10-100 ps timescale is sensitive only to the metal-insulator phase transition and is in agreement with some previously published results. The difference in the temperature dependences of the responses on nanosecond and μ\mu s timescales indicates that thermal equilibrium between the different degrees of fredom is established relatively slowly - on a nanosecond timescale

    Solution of the Kwiecinski evolution equations for unintegrated parton distributions using the Mellin transform

    Full text link
    The Kwiecinski equations for the QCD evolution of the unintegrated parton distributions in the transverse-coordinate space (b) are analyzed with the help of the Mellin-transform method. The equations are solved numerically in the general case, as well as in a small-b expansion which converges fast for b Lambda_QCD sufficiently small. We also discuss the asymptotic limit of large bQ and show that the distributions generated by the evolution decrease with b according to a power law. Numerical results are presented for the pion distributions with a simple valence-like initial condition at the low scale, following from chiral large-N_c quark models. We use two models: the Spectral Quark Model and the Nambu--Jona-Lasinio model. Formal aspects of the equations, such as the analytic form of the b-dependent anomalous dimensions, their analytic structure, as well as the limits of unintegrated parton densities at x -> 0, x -> 1, and at large b, are discussed in detail. The effect of spreading of the transverse momentum with the increasing scale is confirmed, with growing asymptotically as Q^2 alpha(Q^2). Approximate formulas for for each parton species is given, which may be used in practical applications.Comment: 18 pages, 6 figures, RevTe

    Stochastic processes with finite correlation time: modeling and application to the generalized Langevin equation

    Full text link
    The kangaroo process (KP) is characterized by various forms of the covariance and can serve as a useful model of random noises. We discuss properties of that process for the exponential, stretched exponential and algebraic (power-law) covariances. Then we apply the KP as a model of noise in the generalized Langevin equation and simulate solutions by a Monte Carlo method. Some results appear to be incompatible with requirements of the fluctuation-dissipation theorem because probability distributions change when the process is inserted into the equation. We demonstrate how one can construct a model of noise free of that difficulty. This form of the KP is especially suitable for physical applications.Comment: 22 pages (RevTeX) and 4 figure

    GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients

    Get PDF
    GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. The GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1-LPL complex is crucial for generating lipid nutrients for adjacent parenchymal cells. GPIHBP1 is absent in capillaries of the brain, which uses glucose for fuel; however, GPIHBP1 is expressed in capillaries of mouse and human gliomas. Importantly, the GPIHBP1 in glioma capillaries captures locally produced LPL. We document, by NanoSIMS imaging, that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and provides a source of lipid nutrients for glioma cells

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Effect of Reynolds number and lithium cation insertion on titanium anodization

    Get PDF
    This work studies the influence of using hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during Ti anodization and Li+ intercalation on anatase TiO2 nanotubes. The synthesized photocatalysts were characterized by using Field Emission Scanning Electron Microscope (FE-SEM), Raman Confocal Laser Microscopy, Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky analysis (M-S), photoelectrochemical hydrogen production and resistance to photocorrosion tests. The obtained results showed that the conductivity of the NTs increases with Li+ intercalation and Re. The latter is due to the fact that the hydrodynamic conditions eliminate part of the initiation layer formed over the tube-tops, which is related to an increase of the photocurrent in the photoelectrochemical water splitting. Besides, the photogenerated electron-hole pairs are facilitated by Li+ intercalation. Finally, this work confirms that there is a synergistic effect between Re and Li+ intercalation
    corecore