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A B S T R A C T   

Oil in seeds is encapsulated in oleosomes, which are small lipid droplets surrounded by a phospholipid-protein 
monolayer. The currently proposed method to extract intact oleosomes includes mixing seeds with alkaline 
media in a ratio 1:7, batch blending and filtering. In this work, we propose the use of a twin-screw press to 
perform the oleosome extraction at pH 7. The results show that similarly to blender extraction, twin-screw press 
recovers ⁓60% of the oleosomes; however the twin-screw press is able to achieve this yield even when just pure 
water is used. While in the blender extraction, the yield depends on ionic strength and pH of the extraction 
media, when using twin-screw press, the oleosome extraction yield predominantly depends on the mechanical 
forces. These shear forces are able to break the cell walls and release the cellular material while maintaining the 
integrity of oleosomes. The oleosomes extracted with twin-screw press have similar characteristics than those 
obtained by the blending process. Overall, twin-screw press seems a promising alternative to scale-up the 
oleosome aqueous extraction, especially as neutral pH can be used and the water usage is significantly reduced. 
Additionally, preliminary results showed that the yield can increase up to 90 wt%.   

1. Introduction 

Vegetable oil is stored in intracellular organelles named oleosomes. 
Oleosomes consist of a core of triglycerides surrounded by a monolayer 
of phospholipids and proteins (Tzen, 2012). This structure provides 
oleosomes with great stability against physical and chemical stresses 
(Huang, 1992; Purkrtova et al., 2008). The hydrophilic nature of the 
oleosome interface allows their extraction by aqueous solvents, forming 
a natural and stable oil in water emulsion. The properties of the obtained 
emulsion can be customized by the composition of the aqueous extrac
tion media, which influences the interactions of the oleosome interface 
and the co-extracted proteins (Romero-Guzm�an et al., 2020). This, in 
turn, influences the oleosome solubility and hence their extractability 
(Iwanaga et al., 2007; Nikiforidis and Kiosseoglou, 2009). Oleosome 
extraction is currently performed by soaking the oilseeds at a ratio of 
1:7, followed by blending and filtration. A series of centrifugation cycles 
recovers a cream rich in oleosomes with characteristics very similar to 
those of engineered emulsions (Nikiforidis and Kiosseoglou, 2009; 
Rosenthal et al., 1998, 1996). This extraction procedure requires 
nevertheless a large amount of water, which makes upscaling difficult 
(Kapchie et al., 2011). 

Hence, alternative technologies that could deal with the mentioned 
requirements are necessary. A possible technology to replace the current 
batch-blending method is the use of a continuous twin-screw press. This 
technology is available at an industrial scale and is commonly used in 
the food industry for grinding, liquid/solid extraction and liquid/solid 
separation (Thiyam-Hollaender et al., 2012; Uitterhaegen and Evon, 
2017). While it has been successfully used for aqueous oil extraction 
(Evon et al., 2010, 2007; Uitterhaegen and Evon, 2017) we think that 
the twin-screw press has the potential to obtain oleosomes as the blender 
and filtering process. 

Therefore, the aim of this work is to compare the oleosome twin- 
screw extraction to the current lab-scale blending-based process on its 
extraction efficiency and the characteristics of the extracted oleosomes, 
using aqueous media with different composition and ionic strength. 

2. Materials and methods 

2.1. Materials 

Rapeseeds (Alizze) were purchased from a seed producer. The used 
seeds are food grade as they do not contain euricic acid and have a low 
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glucosinolate content (13 mg/100 g). Their composition is: 9.0% � 1.2 
moisture, 36.0 wt % � 1.3 of oil and 18.0 wt % � 0.7 of protein in wet 
basis. All the chemicals were obtained in analytical grade from Sigma- 
Aldrich (St. Louis, MO, USA). Solutions and dispersions were made 
with ultra-pure water (MilliQ) obtained by a Merck Millipore device 
(Darmstadt, Germany). 

2.2. Aqueous extraction of oleosomes by blender or by twin-screw press 

All extractions were performed in batches of 100 g of seeds. Based on 
the work of De Chirico et al. (2018), the optimized extraction conditions 
for rapeseed, such as soaking time and settings during blending, were 
chosen. Prior to the extraction, the seeds were soaked for 16 h at 4 �C 
using a solution of either NaHCO3 (0.1 mol/L) adjusted to pH 9.5, KCl 
(0.2 mol/L) adjusted to pH 7 or H2O also adjusted to pH 7. The low 
temperature suggested during the soaking time has proved to supressed 
the enzymatic activity and microbial growth (De Chirico et al., 2018; 
Simon et al., 1976; Valero et al., 2009). The pH was adjusted with a 
solution of NaOH (1.0 mol/L) for the alkaline solution and NaOH 
(0.1 mol/L) for pH 7. A SevenMulti™ dual meter pH/conductivity 
(Mettler Toledo, Greifensee, Switzerland) was used to monitor the pH. 
The seed:solution ratio was 1:1 by weight. The pre-soaked seeds were 
then used for the extractions either with a kitchen blender (2.2.1) or 
with a twin-screw press (2.2.2). 

2.2.1. Extraction with the blender method 
For the lab-scale blender extraction, the ratio of pre-soaked seeds and 

extraction media was adjusted to 1:7 based on dry weight of the initial 
amount of seeds, both seeds and extraction media were kept cooled until 
the moment of extraction. The seeds and the media were blended 
(Thermomix Vorwerk, Germany) for 90 s at 7200 rpm. The obtained 
slurry was filtered using 2 layers of cheesecloth with a pore size of 
⁓150 μm (GEFU®, Eslohe, Germany). The filtrate constituted the initial 
oleosome extract, while the remaining solids constituted the cake. After 
filtration the filtrate was immediately cooled down to 4 �C. 

2.2.2. Extraction with twin-screw press 
The pre-soaked seeds (1:1 seed:solution by weight) were taken out of 

the fridge (4 �C) and directly processed with a lab-scale twin-screw press 

(Angel 7500, Naarden The Netherlands). Due to the short processing 
time ⁓10 s, the temperature of the extract did not change much. In 
Fig. 1 an image of the lab-scale twin-screw press used for the extraction 
is depicted. The velocity of the rotation of the screws could not be 
adjusted, so it was kept constant to 82 rpm. Two streams were recovered 
from the press: a press cake and a concentrated slurry, which was the 
oleosome-rich extract. For a fair comparison between the two extraction 
methods; however, an additional step was introduced. The collected 
extract was diluted to a ratio of 1:7 by weight using the corresponding 
cooled extraction solution (NaHCO3 0.1 mol/L solution at pH 9.5, or KCl 
0.2 mol/L solution at pH 7 or H2O), which resulted in a stream here after 
referred as the first extract. Subsequently, the same oleosome recovery 
procedure was followed as with the blender-isolated oleosomes. 

2.3. Isolation of oleosomes 

Isolation of the oleosomes from the first extract was performed by 
centrifugation at 3000 g, 4 �C for 15 min, followed by a second centri
fugation, 10,000 g, 4 �C for 30 min (Sorval Lynx 4000 Centrifuge, 
Thermo Scientific USA). The oleosome rich cream layer was then 
drained from the excess of solution using filter paper. The collected 
cream was subsequently dispersed in one of the three solutions (0.1 mol/ 
L NaHCO3, 0.2 mol/L KCl or pure water) at a weight ratio of 1:4 and 
centrifuged at 10,000 g, 4 �C for 30 min. The cream was collected and 
analysed for its composition and physical properties. 

2.4. Characterization of the streams 

2.4.1. Moisture content 
To determine the moisture content of the cake and the oleosome 

cream, 1 g was dried with a Moisture Analyser (Leicester, UK) at 90 �C 
until constant weight. The drying time varied from 10 to 40 min, 
depending on the sample. The % of moisture was determined as the 
weight difference between the initial and the dehydrated sample, 
divided by the initial mass of the sample. 

2.4.2. Lipid content 
The lipid content of dried samples was determined by Soxhlet 

extraction with petroleum ether (B-811 Buchi Extractor, Switzerland). 

Fig. 1. Twin-screw case and filter (left), screws profile (centre), screws diameter (top right), zoom-in on the sieve attached to the case (bottom right) used for the 
oleosome extraction. 
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The analyses were performed in triplicates for each sample. The oleo
some extraction yield was calculated based on the difference between 
the amount of oil in the initial seeds (36.5 � 1.3) and the amount of oil in 
the cake. This calculation assumed that all the extracted oil was ex
pected to be either in the form of native oleosomes or emulsified oil. 

2.4.3. Protein content 
The protein content was determined using the Dumas method. The 

protein content was quantified using a conversion factor of 5.7 for the 
nitrogen content. The protein extraction yield was calculated based on 
the difference between the protein content remaining in the cake and the 
initial protein content in the seeds (18.5 � 0.7). 

2.5. Protein profile characterization 

The protein profile was analysed qualitatively by SDS poly
acrylamide gel electrophoresis using a Bio-Rad MiniProtean cell (Bio- 
Rad Laboratories Inc., Hercules, USA). Two types of buffers were used to 
unfold the proteins (Nikiforidis and Kiosseoglou, 2009). Buffer 1 con
sisted of Tris-HCl (50.0 mmol/L), Urea (5.0 mol/L), 1 wt % SDS and 4 wt 
% 2-mercaptoethanol. Buffer 2 consisted of Tris-HCl (125.0 mmol/L), 
Urea (5.0 mol/L), 1 wt % SDS, 20 wt % Glycerol and 4 wt% 2-mercaptoe
thanol. The creams were dispersed in ultra-pure water (1:100 wt/v.) and 
combined with Buffer 1 (1:1 by volume) and agitated for 15 min at room 
temperature. Each sample was rested for 15 min before buffer 2 was 
added. The samples were vortexed once more for 15 min and rested for 
another 15 min. Afterwards, the samples were heated at 90 �C for 5 min 
and kept at � 20 �C overnight. Before the samples were loaded onto the 
gel, 3 freeze-thaw cycles were applied. 20 μL of each sample were loaded 
on a 12% Tris–HCl SDS-ready gel, size range of 10–200 kDa; plus 10 μL 
of Pre-Stained Protein Standard (Bio-Rad Laboratories Inc., Hercules, 
USA). The electrophoresis was carried out at 200 V for about 30 min. 
Subsequently, the gel was stained with Bio-safe Coomassie Stain (Bio-
Rad Laboratories Inc., Hercules, USA). 

2.6. Particle size distribution determination 

The particle size of the creams was measured by a static laser light 
scattering (Malvern Master Sizer 3000, Malvern Instruments, UK). The 
refractive index used was 1.43. The oleosome cream was first dissolved 
in ultra-pure water at a 1:10 (weight to volume). An aliquot of the dis
solved cream was added in the device, filled with ultra-pure water at pH 
6.5. Each sample was measured in triplicate and expressed with differ
ential particle size distributions. 

2.7. Oleosome zeta-potential determination 

Dynamic light scattering (DLS Zetasizer Nano ZS, Malvern In
struments Ltd, UK) was used to analyse the ζ-potential of the samples. 
The creams were diluted 1000 times (oil-base) with ultra-pure water. 
After the dilution, the pH of the dispersions was adjusted manually in a 
range of 3–9 with either a HCl (1.0 mol/L) or a NaOH (1.0 mol/L) so
lution. The refractive indices used were 1.43 for the dispersed phase and 
1.33 for the continuous phase. 

2.8. Microscopy 

Light microscopy images were captured using a Zeiss Axioscope 
microscope (Carl Zeiss Micro Imaging, Inc., Thornwood, NY). The 
oleosome cream was first dissolved in ultra-pure water to 1:10 (weight 
to volume) which was then further diluted 1:100 (volume based). 

2.9. Statistical analysis 

A one way analysis of variance (ANOVA) and a LSD post-hoc sig
nificance test were applied to assess the differences among the 

extraction yields w.r.t. the extraction method and the recirculation 
steps. The analyses were performed with IBM SPSS statistics 23 soft
ware. Differences were considered to be significant at p < 0.05. 

3. Results and discussion 

3.1. Oleosome and protein extraction yields 

Aqueous oleosome extraction differs from other known oil extraction 
procedures, such as dry-pressing (Matth€aus, 2015), aqueous oil extrac
tion (Campbell and Glatz, 2009) and aqueous enzymatic oil extraction 
(Mat Yusoff et al., 2015). To extract oil, oleosome disruption is neces
sary, which is achieved by employing intensive conditions, like 
dry-pressing, high temperature pre-treatments, and organic solvent 
extraction (De Moura et al., 2008; Dickey et al., 2008; Evon et al., 2007; 
Moreau et al., 2004). On the other hand, for the retrieval of intact 
oleosomes mild conditions (soaking blending, filtering) are used (De 
Chirico et al., 2018; Iwanaga et al., 2007; Nikiforidis and Kiosseoglou, 
2009). 

Understanding the nature and structure of oleosomes allows the se
lection of proper extraction conditions. Oleosomes are surrounded by a 
phospholipid monolayer and proteins, which equip them with charac
teristics similar to those of micron-sized protein particles (Maurer et al., 
2013; Zielbauer et al., 2018). In example, the charge profile with pH 
changes follows the same s-shaped pattern like seed storage proteins 
(Adams et al., 2012; De Chirico et al., 2018; Nikiforidis and Kiosseoglou, 
2009). Therefore, similar to proteins, oleosomes can be extracted in 
alkaline media or media with high ionic strength, where they are highly 
charged (� 40 to � 70 mV) and soluble (De Chirico et al., 2018; Niki
foridis and Kiosseoglou, 2009; Romero-Guzm�an et al., 2020). In a pre
vious study, we compared the oleosome extraction at alkaline pH with 
the extraction at neutral pH, with the presence of salt. Therefore, to 
validate the effect of the mechanical forces in the twin screw press, we 
used similar extraction media (Romero-Guzm�an et al., 2020). More 
specifically, we used three different extraction solutions: (1) alkaline 
conditions at pH 9.5 with NaHCO3 (0.1 mol/L), (2) neutral conditions 
with KCl (0.2 mol/L), and (3) neutral conditions using ultra-pure water. 
The two first extraction media (1) and (2) have been reported to solu
bilize oleosomes efficiently and enhance the extraction yield, relative to 
pure water (3), which in our previous study was used as a reference 
(Romero-Guzm�an et al., 2020). The extraction yields are given in Fig. 2. 

The oleosome extraction yields obtained by using blending at pH 9.5 
(NaHCO3 0.1 mol/L) and at pH 7 (KCl 0.2 mol/L) were similar at ~64 wt 
%, which was attributed to the increases in solubilization due to the 
ionic environments created by pH or increased ionic strength (Nikifor
idis and Kiosseoglou, 2009; Romero-Guzm�an et al., 2020). The extrac
tion yield using pure water was lower at 43 wt%. The low ionic strength 
of pure water did not affect the interactions of the oleosomes with the 
co-extracted material, leading to lower solubilization of oleosomes and 
therefore lower extraction yield (Romero-Guzm�an et al., 2020). 

In the case of twin-screw press extraction, the yields were less 
dependent on the extraction solution; as similar yields were obtained for 
all three media (~60 wt %). This suggested that the extraction in the 
twin-screw press is mechanistically different from the blender-cheese 
cloth extraction. It has been reported that using the twin-screw press 
already leads to efficient cell-lysis (Uitterhaegen and Evon, 2017). 
However, the sieve attached to the twin-screw press (⁓500 μm pore 
size) allows bigger particles to pass through compared to those formed 
with the blender knife and separated with the cheese-cloth (⁓150 μm 
pore size). Furthermore, to investigate the mass transfer of other com
ponents during the pressing step, the amount of extracted proteins was 
analysed as well (Fig. 3). It would be expected that the media extraction 
conditions (pH and ionic strength) can influence the solubilization and 
hence the extraction of storage proteins (Kramer et al., 2012). However, 
Fig. 3 shows that the mass transfer of the extraction is not affected by the 
media. The extraction of proteins is mostly mastered by the mechanical 
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forces in the twin-screw press. 
The similar yields obtained for all the extraction media suggested 

that similar cell wall breakage (Rosenthal et al., 1998) and diffusion of 
cellular components (Passos et al., 2009) took place for all the 
twin-screw extractions. Probably due to the limited amount of aqueous 
media, the solubilization of the material was limited and the mechanical 
forces created in the screws controlled the release of cellular material. 
Therefore, using a twin-screw press mechanism can lead to significantly 
lower water and chemicals use. In Fig. 4 we present our hypothesis on 
the mechanisms of extraction of each of the examined devices. 

The oleosome extracts from both extraction procedures are suitable 
to use as ingredients for emulsion systems. To achieve this, an 

appropriate heat treatment (90 �C, 30 min), would be necessary to 
deactivate co-extracted endogenous enzymes such as lipase and lip
oxygenase (Chen et al., 2012). Nevertheless, in order to analyse in depth 
the effect of the extraction methods on oleosome properties, the oleo
somes where further isolated. 

3.2. Effect of the extraction method on the recovered oleosomes 

Intact oleosomes have excellent chemical stability and may well have 
specific nutritional properties, depending on their degree of integrity 
and the amount of proteins that are co-extracted (Nikiforidis et al., 
2014). It was therefore important to assess the physical stability and 
properties of the oleosomes obtained with both processes. For this, the 
extracts obtained with the twin-screw press and the blender were diluted 
towards the same solid:solution ratio and centrifuged to concentrate the 
oleosomes. 

3.2.1. Oleosome cream composition 
Table 1 summarises the composition of the obtained oleosome 

creams, regarding oil, protein and moisture compositions. 
The obtained creams had very similar compositions in both cases, 

indicating that the extraction process did not impact the composition of 
the final recovered oleosome-concentrated creams. Nevertheless, it is 
known that the extraction solution influences the composition; the use of 
pure water leads to more interactions between oleosomes and co- 
extracted proteins (Romero-Guzm�an et al., 2020). While the mechani
cal pressure in the twin-screw press allowed a similar extraction yield by 
opening up the cells, it did not have an effect on the interactions be
tween oleosomes and co-extracted material. This effect was undoubtedly 
still defined by the pH and ionic strength of the extraction media, which 
did not allow the breakage of ionic bonds nor hydrophobic interactions 
between oleosomes and the co-extracted proteins in their direct vicinity. 
This reinforces the idea that the main influence of the press forces is in 
the opening of the cells and release of the material, but the direct sol
ubilization of the oleosomes was still lead by the aqueous media. 

Fig. 2. Comparison of the yield (%) of oleosomes obtained from the extraction performed either with the twin-screw press of with the blender at either alkaline 
conditions (pH 9.5 NaHCO3 0.1 mol/L) or neutral conditions (pH 7 KCl 0.2 mol/L or H2O). An ANOVA statistical analysis was performed with a p < 0.05. 

Fig. 3. Protein extraction yield (%) obtained with twin-screw press with each 
different extraction media either at alkaline (pH 9.5 NaHCO3 0.1 mol/L) or 
neutral conditions (pH 7 KCl 0.2 mol/L and H2O). An ANOVA statistical anal
ysis was performed with a p < 0.05. 
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3.2.2. Effect of processing on oleosome protein interactions 
The interfacial composition of the oleosomes was analysed in two 

ways. First, the proteins interacting with the oleosome interface were 
characterized with SDS Page; second, their zeta potential was measured. 

The results of the SDS-page analyses are shown in Fig. 5. Extraction 
at alkaline conditions using the blender gave a single strong band at 
~18 kDa, indicative of oleosin (Jolivet et al., 2011; Tzen, 2012), plus 
some minor bands around 9 kDa. The twin-screw press at the same 
alkaline conditions exhibited much more diverse proteins, quite similar 
to the patterns obtained at neutral conditions (both with and without 
KCl). For those extracts, there was evidence for the presence of both 
steroleosin and caleosin at 42 kDa and 27 kDa, respectively (Lin et al., 
2002; Næsted et al., 2000). Under the reducing conditions during the gel 
analysis, the rapeseed storage proteins were monomerized. Conse
quently, cruciferin was monomerized from 250 kDa to 26–36 kDa and 
18–21 kDa for the acidic and basic polypeptides, respectively (Zhao 
et al., 2016). Similarly, napin was reduced from 14 kDa to 4 kDa and 

Fig. 4. Proposed mechanisms of extraction of oleosomes and proteins when using twin-screw press and blender extraction. A. During twin-screw press extraction, 
cell-lysis occurs and cellular material is released; however, due to the limited amount of aqueous media, the solubilization of the material is also limited. All material 
that passes through the sieve attached to the device (pore size ⁓500 μm) is mixed with additional aqueous medium. After this step the solubilization of the material is 
enhanced. B. During blender extraction the cells are disrupted inside the blender while due to the abundant aqueous medium (1:7 solid:water ratio), the solubili
zation of the material is happening parallel to the cell-lysis. Finally, mostly the soluble material passes through the cheese-cloth (pore size ⁓150 μm) and it 
is recovered. 

Table 1 
Composition of the creams obtained with either blender or twin-screw press at 
alkaline conditions (pH 9.5 NaHCO3 0.1 mol/L) or at neutral conditions (pH 7 
KCl 0.2 mol/L or pH 7 H2O).  

Treatments Oil (wt. %) Protein (wt. 
%) 

Water (wt. 
%) 

Blender pH 9.5 NaHCO3 

(0.1 mol/L) 
70.6 � 7.6a 3.6 � 0.4i 25.8x � 2.7x 

pH 7 KCl (0.2 mol/ 
L) 

62.6 � 4.8b 3.8 � 0.4i 30.2 � 2.3y 

pH 7 H2O 42.8 � 2.8c 7.8 � 1.2ii 29.4 � 3.5y 

Twin-screw 
press 

pH 9.5 NaHCO3 

(0.1 mol/L) 
71.3 � 5.1a 4.5 � 0.2i 26.2 � 1.4x 

pH 7 KCl (0.2 mol/ 
L) 

68.1 � 6.2a 5.2 � 1.7ii 26.5 � 2.3x 

pH 7 H2O 45.0 � 3.5c 8.5 � 2.0iii 30.5 � 3.3y 

Values with different letters are significantly different with p < 0.05. 

Fig. 5. SDS-PAGE of protein extracts from isolated oleosome creams extracted 
at pH 9.5 with NaHCO3 (0.1 mol/L) using the blender (1) or the twin screw 
press (2), extracted at pH 7 with KCl (0.2 mol/L) using the blender (3) or the 
twin-screw press (4), and at pH 7 with H2O using the blender (5) or the twin 
screw press (6). 
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9 kDa (Murphy and Cummins, 1989). Napin seemed to be more abun
dant than cruciferin at alkaline conditions, which could be due to its 
wider solubility at different pH in comparison to cruciferin (Perera et al., 
2016). 

We hypothesize that the additional proteins observed in the cream 
recovered with the twin-screw press using alkaline conditions (band 2) 
were co-extracted and entrapped by the oleosomes during the first 
centrifugation step. This could indicate that the step of adding aqueous 
media to the extracts after the twin-screw press was very short, thus, the 
co-extracted proteins were carried up with the oleosomes during 
centrifugation. On the contrary, in the blending process, the abundance 
of extraction media over a longer time prevented this protein recovery 
during centrifugation (Fig. 4). For the extractions at neutral conditions 
(Fig. 5 Bands 3–6), similar profiles were observed because the neutral 
conditions promote the interactions between the oleosomes and the 
proteins. Therefore, in these cases we did not observe differences be
tween the twin-screw press and the blender extractions. 

Despite the differences in the protein profile at alkaline conditions, 
the extraneous proteins that creamed with the oleosomes when using the 
twin-screw press did not affected the zeta potential (Fig. 6). Moreover, 
both extracts (twin-screw press and blender) with 0.1 mol/L NaHCO3 
showed a zero charge point of around pH 6.0 corresponding to the 
isoelectric point of the most abundant oleosome interfacial protein, 
oleosin (Tzen et al., 1993). 

For the oleosomes extracted at neutral conditions with KCl (0.2 mol/ 
L) or with H2O, there was a clear shift to the left for all the recovered 
creams, irrespective of the extraction process (twin-screw press or 
blender). This shift can be attributed to the external material present at 
the oleosome interface, such as storage proteins or soluble poly
saccharides coming from the mucilage of the rapeseed hulls (Eriksson 
et al., 1994), which can interact with the oleosome membrane (Tamayo 
Tenorio et al., 2017). 

3.2.3. Oleosome size distribution 
The physical stability of the oleosome creams was investigated by 

analysing the particle size distribution and by microscopy (Fig. 7). 
The oleosomes extracted at pH 9.5 (Fig. 7A) were individual oil 

droplets with a d3,2 of 0.59 μm and 0.76 μm. There was no discernible 
difference between the oleosomes recovered with the twin-screw press 
or the blender. The small shoulder at 3–10 μm is probably because of a 
slight association between some oleosomes. The oleosomes that were 
extracted at pH 7 with KCl (Fig. 7B) were extensively aggregated, 
leading to a d3,2 of 11.9 μm and 15.4 μm. Once more, there was no dif
ference between the oleosomes extracted with twin-screw press or 
blender. However, the microscopic analysis showed that the larger ag
gregates were composed of individual oleosomes with slightly bigger 
size than those obtained at pH 9.5. This is probably due to the effect of 
Kþ cations, which can slightly affect the coalesce rate of native 

oleosomes when interacting with phospholipids at oleosomes’ interface 
(Romero-Guzm�an et al., 2020). For the case of extracts obtained with 
pure water, more aggregation was observed; up to the detection limit of 
the SLS system. This aggregation resulted in a larger water content of the 
cream obtained at neutral conditions (Table 1). Water is probably 
trapped within the aggregates due to a stronger network formation be
tween co-extracted material and oleosomes (Nikiforidis and Scholten, 
2015). 

Our overall conclusion is therefore that the oleosomes remained 
intact under all extraction conditions, in spite of their being heavily 
aggregated when using neutral pH extraction media. It is of importance 
that many applications of oleosomes as emulsions will require attaining 
a minimum viscosity. Here, oleosome aggregation may be a positive 
aspect, as it will lead to higher viscosities with lower volume fractions of 
oleosomes (McClements, 2004). While this may not apply to each 
application, it is important that the extraction conditions may be 
adjusted to create the properties that are desired for specific 
applications. 

3.3. Potential scalability of the oleosome extraction with a twin-screw 
press 

In an attempt to achieve high extraction yields in the lab-scale twin- 
screw press, the obtained press cake was rehydrated (1:1) with pure 
water, and re-pressed through the twin-screw press. As a result, the 
overall oleosome yield reached 90 wt% �2.4. This indicated that by 
increasing the mechanical forces, the extraction yield was significantly 
increased. Industrially, this could be achieved by the correct selection of 
length and gaps between the screws, which could lead to an increase in 
the residence time of the material and hence extraction time (Gautam 
and Choudhury, 1999). Moreover, the mild conditions used during this 
extraction, could favour the usage of the cake stream in products such as 
those in which other fibrous residues have succesfully been used (Lian 
et al., 2019; Montemayor-Mora et al., 2018). 

Finally, we believe this technology could also be applied to other 
oilseeds and nuts. However, in order to address the effect on other 
oleosomes, specially due to their broad size range: 0.5–20 μm (Dave 
et al., 2019; Tzen and Huang, 1992) and since the mechanical forces 
seem to play an important role, and can be affected by the different 
composition of the oil-bearing material, further experiments and anal
ysis are necessary. 

4. Conclusion 

Oleosome aqueous extraction was carried out by a twin-screw press 
at 1:1 solid to liquid ratio, and compared to blender extraction. The 
twin-screw extraction required six times less extraction media in com
parison to the blender extraction. At alkaline conditions, the extraction 
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yields were similar with both investigated process steps, while, when 
using pure water as extraction media, significantly larger yields were 
obtained with the twin-screw press (43 wt % for blender vs 60 wt% with 
the twin-screw press). Additionally, there were no significant differences 
in extraction yield when different extraction media were used (0.1 mol/ 
L NaHCO3 at pH 9.5, 0.2 mol/L KCl, at pH 7, or H2O) in the twin-screw 
press, showing that the mechanical forces in the twin screw press 
dominate the extraction dynamics and mechanism. The oleosome yield 
obtained with a single pass through the twin-screw, regardless the media 
was 60 wt % and it could be increased to 90 wt % with a second pass, 
indicating the potential of twin-screw press to increase the oleosome 
extraction yield. 

The use of neutral conditions (with or without KCl) led to larger 
protein co-extraction and aggregation of the oleosomes. The oleosomes 
however remained intact, preserving their native characteristics. The 
mechanical forces during the twin-screw extraction were effective in 
opening the cells and release cellular material, but did not influence the 
solubilization of the oleosomes and most importantly, they did not 
disrupt the oleosomes. 

The properties of the final oleosome suspension can be adjusted to 
the needs of their final application by adjusting the extraction condi
tions. Extraction at high pH gave a suspension of isolated oleosomes, 
while a neutral pH resulted in oleosome aggregates. 

The twin-screw press is a unit operation that could also be used at 
industrial scales. The promising results generated in this work with a 
lab-scale twin-screw press could be used in order to further investigate 
the oleosome extraction mechanism in bigger scales and with different 
seeds. 
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