474 research outputs found
Local convergence of the Levenberg-Marquardt method under H\"{o}lder metric subregularity
We describe and analyse Levenberg-Marquardt methods for solving systems of
nonlinear equations. More specifically, we propose an adaptive formula for the
Levenberg-Marquardt parameter and analyse the local convergence of the method
under H\"{o}lder metric subregularity of the function defining the equation and
H\"older continuity of its gradient mapping. Further, we analyse the local
convergence of the method under the additional assumption that the
\L{}ojasiewicz gradient inequality holds. We finally report encouraging
numerical results confirming the theoretical findings for the problem of
computing moiety conserved steady states in biochemical reaction networks. This
problem can be cast as finding a solution of a system of nonlinear equations,
where the associated mapping satisfies the \L{}ojasiewicz gradient inequality
assumption.Comment: 30 pages, 10 figure
Relativistic BB84, relativistic errors, and how to correct them
The Bennett-Brassard cryptographic scheme (BB84) needs two bases, at least
one of them linearly polarized. The problem is that linear polarization
formulated in terms of helicities is not a relativistically covariant notion:
State which is linearly polarized in one reference frame becomes depolarized in
another one. We show that a relativistically moving receiver of information
should define linear polarization with respect to projection of
Pauli-Lubanski's vector in a principal null direction of the Lorentz
transformation which defines the motion, and not with respect to the helicity
basis. Such qubits do not depolarize.Comment: revtex
Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen
The calculation of the hindered roton-phonon energy levels of a hydrogen
molecule in a confining potential with different symmetries is systematized for
the case when the rotational angular momentum is a good quantum number. One
goal of this program is to interpret the energy-resolved neutron time of flight
spectrum previously obtained for HC. This spectrum gives direct
information on the energy level spectrum of H molecules confined to the
octahedral interstitial sites of solid C. We treat this problem of
coupled translational and orientational degrees of freedom a) by construction
of an effective Hamiltonian to describe the splitting of the manifold of states
characterized by a given value of and having a fixed total number of phonon
excitations, b) by numerical solutions of the coupled translation-rotation
problem on a discrete mesh of points in position space, and c) by a group
theoretical symmetry analysis. Results obtained from these three different
approaches are mutually consistent. The results of our calculations explain
several hitherto uninterpreted aspects of the experimental observations, but
show that a truly satisfactory orientational potential for the interaction of
an H molecule with a surrounding array of C atoms has not yet been
developed.Comment: 53 pages, 9 figures, to appear in Phys. Rev B (in press). Phys. Rev.
B (in press
Study of the dependence of 198Au half-life on source geometry
We report the results of an experiment to determine whether the half-life of
\Au{198} depends on the shape of the source. This study was motivated by recent
suggestions that nuclear decay rates may be affected by solar activity, perhaps
arising from solar neutrinos. If this were the case then the -decay
rates, or half-lives, of a thin foil sample and a spherical sample of gold of
the same mass and activity could be different. We find for \Au{198},
, where
is the mean half-life. The maximum neutrino flux at the sample in our
experiments was several times greater than the flux of solar neutrinos at the
surface of the Earth. We show that this increase in flux leads to a significant
improvement in the limits that can be inferred on a possible solar contribution
to nuclear decays.Comment: 5 pages, 1 figur
Structure and properties of a novel fulleride Sm6C60
A novel fulleride Sm6C60 has been synthesized using high temperature solid
state reaction. The Rietveld refinement on high resolution synchrotron X-ray
powder diffraction data shows that Sm6C60 is isostructural with body-centered
cubic A6C60 (A=K, Ba). Raman spectrum of Sm6C60 is similar to that of Ba6C60,
and the frequencies of two Ag modes in Sm6C60 are nearly the same as that of
Ba6C60, suggesting that Sm is divalent and hybridization between C60 molecules
and the Sm atom could exist in Sm6C60. Resistivity measurement shows a weak
T-linear behavior above 180 K, the transport at low temperature is mainly
dominated by granular-metal theory.Comment: 9 pages, 3 figures, submitted to Phys. Rev. B (March 12, 1999
Optical investigation of the charge-density-wave phase transitions in
We have measured the optical reflectivity of the quasi
one-dimensional conductor from the far infrared up to the
ultraviolet between 10 and 300 using light polarized along and normal to
the chain axis. We find a depletion of the optical conductivity with decreasing
temperature for both polarizations in the mid to far-infrared region. This
leads to a redistribution of spectral weight from low to high energies due to
partial gapping of the Fermi surface below the charge-density-wave transitions
at 145 K and 59 K. We deduce the bulk magnitudes of the CDW gaps and discuss
the scattering of ungapped free charge carriers and the role of fluctuations
effects
Normal-state conductivity in underdoped La_{2-x}Sr_xCuO_4 thin films: Search for nonlinear effects related to collective stripe motion
We report a detailed study of the electric-field dependence of the
normal-state conductivity in La_{2-x}Sr_xCuO_4 thin films for two
concentrations of doped holes, x=0.01 and 0.06, where formation of diagonal and
vertical charged stripes was recently suggested. In order to elucidate whether
high electric fields are capable of depinning the charged stripes and inducing
their collective motion, we have measured current-voltage characteristics for
various orientations of the electric field with respect to the crystallographic
axes. However, even for the highest possible fields (~1000 V/cm for x=0.01 and
\~300 V/cm for x=0.06) we observed no non-linear-conductivity features except
for those related to the conventional Joule heating of the films. Our analysis
indicates that Joule heating, rather than collective electron motion, may also
be responsible for the non-linear conductivity observed in some other 2D
transition-metal oxides as well. We discuss that a possible reason why moderate
electric fields fail to induce a collective stripe motion in layered oxides is
that fairly flexible and compressible charged stripes can adjust themselves to
the crystal lattice and individual impurities, which makes their pinning much
stronger than in the case of conventional rigid charge-density waves.Comment: 10 pages, 10 figures, accepted for publication in Phys. Rev.
Half-metallic antiferromagnets in thiospinels
We have theoretically designed the half-metallic (HM) antiferromagnets (AFMs)
in thiospinel systems, and , based on the electronic structure
studies in the local-spin-density approximation (LSDA). We have also explored
electronic and magnetic properties of parent spinel compounds of the above
systems; and are found to be HM
ferromagnets in their cubic spinel structures, while is a
ferrimagnetic insulator. We have discussed the feasibility of material
synthesis of HM-AFM thiospinel systems.Comment: 4 pages, 5 figure
Electromagnetic Response of Layered Superconductors with Broken Lattice Inversion Symmetry
We investigate the macroscopic effects of charge density waves (CDW) and
superconductivity in layered superconducting systems with broken lattice
inversion symmetry (allowing for piezoelectricity) such as two dimensional (2D)
transition metal dichalcogenides (TMD). We work with the low temperature time
dependent Ginzburg-Landau theory and study the coupling of lattice distortions
and low energy CDW collective modes to the superconducting order parameter in
the presence of electromagnetic fields. We show that superconductivity and
piezoelectricity can coexist in these singular metals. Furthermore, our study
indicates the nature of the quantum phase transition between a commensurate CDW
phase and the stripe phase that has been observed as a function of applied
pressure.Comment: 9 pages, 1 figure. Final version. Accepted in Phys.Rev.
X-Ray Scattering Measurements of the Transient Structure of a Driven Charge-Density-Wave
We report time-resolved x-ray scattering measurements of the transient
structural response of the sliding {\bf Q} charge-density-wave (CDW) in
NbSe to a reversal of the driving electric field. The observed time scale
characterizing this response at 70K varies from 15 msec for driving
fields near threshold to 2 msec for fields well above threshold. The
position and time-dependent strain of the CDW is analyzed in terms of a
phenomenological equation of motion for the phase of the CDW order parameter.
The value of the damping constant, eV
seconds \AA, is in excellent agreement with the value
determined from transport measurements. As the driving field approaches
threshold from above, the line shape becomes bimodal, suggesting that the CDW
does not depin throughout the entire sample at one well-defined voltage.Comment: revtex 3.0, 7 figure
- …
