1,190 research outputs found

    Effect of nebulized albuterol on circulating leukocyte counts in normal subjects

    Get PDF
    AbstractNebulized β2-receptor agonists may cause neutrophil demargination and result in misleading total circulating leukocyte counts (WBCs) in patients with acute bronchospasm. Varying underlying adrenergic stimulation in these patients also makes interpretation of these data difficult. This study examined the direct effect of these agents on the measured WBCs of healthy adults without evidence of bronchospasm or illness.A prospective, blinded, randomized study of 30 healthy volunteers (aged 18–50 years) was performed in a controlled environment. Subjects were excluded if they were pregnant, had a known underlying medical disorder or have had a prior reaction to albuterol or similar medications. Participants in the study were given either a nebulized albuterol treatment or nebulized normal saline (control group). Leukocyte counts were then obtained before and after treatments. Paired data were analysed using a one-tailed t-test while considering an increase of 40% in WBCs to be significant, P=0·05, and β=0·10.Mean leukocyte counts were 5·9 (± 1·2) before treatment as compared to 6·0 (± 1·3) after albuterol nebulization. Using the coefficient of variance of WBCs in normal humans as c. 50% (6000 ± 3000 cells mm−1) we were unable to demonstrate a significant difference in variation in post-nebulized leukocyte counts between the control group and the nebulized albuterol group.While there is concern that the treatment of patients experiencing acute bronchospasm with β2 agonists may result in factitious elevations in peripheral leukocyte counts, we found no direct effect of these agents on measured counts in normal subjects

    A Simple Colorimetric Method for the Estimation of Relative Numbers of Lactobacilli in the Saliva

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67295/2/10.1177_00220345400190040101.pd

    Mandelbrot set in coupled logistic maps and in an electronic experiment

    Full text link
    We suggest an approach to constructing physical systems with dynamical characteristics of the complex analytic iterative maps. The idea follows from a simple notion that the complex quadratic map by a variable change may be transformed into a set of two identical real one-dimensional quadratic maps with a particular coupling. Hence, dynamical behavior of similar nature may occur in coupled dissipative nonlinear systems, which relate to the Feigenbaum universality class. To substantiate the feasibility of this concept, we consider an electronic system, which exhibits dynamical phenomena intrinsic to complex analytic maps. Experimental results are presented, providing the Mandelbrot set in the parameter plane of this physical system.Comment: 9 pages, 3 figure

    Quasilocal equilibrium condition for black ring

    Full text link
    We use the conservation of the renormalized boundary stress-energy tensor to obtain the equilibrium condition for a general (thin or fat) black ring solution. We also investigate the role of the spatial stress in the thermodynamics of deformation within the quasilocal formalism of Brown and York and discuss the relation with other methods. In particular, we discuss the quantum statistical relation for the unbalanced black ring solution.Comment: v2: refs. added, matches the published versio

    Exchange coupling in CaMnO3_3 and LaMnO3_3: configuration interaction and the coupling mechanism

    Full text link
    The equilibrium structure and exchange constants of CaMnO3_3 and LaMnO3_3 have been investigated using total energy unrestricted Hartree-Fock (UHF) and localised orbital configuration interaction (CI) calculations on the bulk compounds and Mn2_2O1114_{11}^{14-} and Mn2_2O1116_{11}^{16-} clusters. The predicted structure and exchange constants for CaMnO3_3 are in reasonable agreement with estimates based on its N\'eel temperature. A series of calculations on LaMnO3_3 in the cubic perovskite structure shows that a Hamiltonian with independent orbital ordering and exchange terms accounts for the total energies of cubic LaMnO3_3 with various spin and orbital orderings. Computed exchange constants depend on orbital ordering. UHF calculations tend to underestimate exchange constants in LaMnO3_3, but have the correct sign when compared with values obtained by neutron scattering; exchange constants obtained from CI calculations are in good agreement with neutron scattering data provided the Madelung potential of the cluster is appropriate. Cluster CI calculations reveal a strong dependence of exchange constants on Mn d eg_g orbital populations in both compounds. CI wave functions are analysed in order to determine which exchange processes are important in exchange coupling in CaMnO3_3 and LaMnO3_3.Comment: 25 pages and 9 postscript figure

    High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory

    Full text link
    The existing hydrous titanium oxide (HTiO) technique for the measurement of 224Ra and 226Ra in the water at the Sudbury Neutrino Observatory (SNO) has been changed to make it faster and less sensitive to trace impurities in the HTiO eluate. Using HTiO-loaded filters followed by cation exchange adsorption and HTiO co-precipitation, Ra isotopes from 200-450 tonnes of heavy water can be extracted and concentrated into a single sample of a few millilitres with a total chemical efficiency of 50%. Combined with beta-alpha coincidence counting, this method is capable of measuring 2.0x10^3 uBq/kg of 224Ra and 3.7x10^3 uBq/kg of 226Ra from the 232Th and 238U decay chains, respectively, for a 275 tonne D2O assay, which are equivalent to 5x10^16 g Th/g and 3x10^16 g U/g in heavy water.Comment: 8 Pages, 2 figures and 2 table

    Physical fitness and white matter microstructure in children with overweight or obesity: the ActiveBrains project

    Get PDF
    Recent studies investigated the association of cardiorespiratory fitness with white matter microstructure in children, yet little work has explored to what extent other components of physical fitness (i.e., muscular or motor fitness) are associated with white matter microstructure. Indeed, this association has not been previously explored in children with overweight/obesity who present a different white matter development. Therefore, we aimed to examine associations between physical fitness components and white matter microstructure in children with overweight/obesity. In total, 104 (10.04 +/- 1.15 years old; 43 girls) children were included in this cross-sectional study. Physical fitness was assessed using the ALPHA-fitness test battery. Fractional anisotropy (FA) and mean diffusivity were derived from diffusion tensor imaging (DTI). No association was found between physical fitness and global DTI metrics (all P>0.082). Within individual tracts, all associations became non-significant when analyses were adjusted for multiple comparisons. Using the voxel-wise approach, we identified a small cluster in the left lateral frontal lobe where children with greater upper-body muscular fitness showed higher FA (PFWE-corrected=0.042). Although our results cannot conclude physical fitness is related to white matter microstructure in children with overweight/obesity; those findings indicate that the association of muscular fitness with white matter microstructure might be more focal on frontal areas of the brain, as opposed to global differences

    Three-body structure of low-lying 18Ne states

    Full text link
    We investigate to what extent 18Ne can be descibed as a three-body system made of an inert 16O-core and two protons. We compare to experimental data and occasionally to shell model results. We obtain three-body wave functions with the hyperspherical adiabatic expansion method. We study the spectrum of 18Ne, the structure of the different states and the predominant transition strengths. Two 0+, two 2+, and one 4+ bound states are found where they are all known experimentally. Also one 3+ close to threshold is found and several negative parity states, 1-, 3-, 0-, 2-, most of them bound with respect to the 16O excited 3- state. The structures are extracted as partial wave components, as spatial sizes of matter and charge, and as probability distributions. Electromagnetic decay rates are calculated for these states. The dominating decay mode for the bound states is E2 and occasionally also M1.Comment: 17 pages, 5 figures (version to appear in EPJA

    Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model

    Full text link
    We investigate the primordial trispectra of the general multifield DBI inflationary model. In contrast with the single field model, the entropic modes can source the curvature perturbations on the super horizon scales, so we calculate the contributions from the interaction of four entropic modes mediating one adiabatic mode to the trispectra, at the large transfer limit (TRS1T_{RS}\gg1). We obtained the general form of the 4-point correlation functions, plotted the shape diagrams in two specific momenta configurations, "equilateral configuration" and "specialized configuration". Our figures showed that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA

    Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Full text link
    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.10.1 and $1.0 \ bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and experienced strong radiative cooling resulting in post-shock compressions of { \times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.Comment: HEDLA 2016 conference proceeding
    corecore