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Physical fitness and white 
matter microstructure in children 
with overweight or obesity: 
the ActiveBrains project
M. Rodriguez‑Ayllon1*, I. Esteban‑Cornejo1, J. Verdejo‑Román2,3, R. L. Muetzel4,5, 
J. Mora‑Gonzalez1,6, C. Cadenas‑Sanchez1,7,8, A. Plaza‑Florido1, P. Molina‑Garcia1, 
A. F. Kramer9,10, A. Catena2,11 & F. B. Ortega1,12

Recent studies investigated the association of cardiorespiratory fitness with white matter 
microstructure in children, yet little work has explored to what extent other components of physical 
fitness (i.e., muscular or motor fitness) are associated with white matter microstructure. Indeed, 
this association has not been previously explored in children with overweight/obesity who present a 
different white matter development. Therefore, we aimed to examine associations between physical 
fitness components and white matter microstructure in children with overweight/obesity. In total, 104 
(10.04 ± 1.15 years old; 43 girls) children were included in this cross‑sectional study. Physical fitness 
was assessed using the ALPHA‑fitness test battery. Fractional anisotropy (FA) and mean diffusivity 
were derived from diffusion tensor imaging (DTI). No association was found between physical fitness 
and global DTI metrics (all P > 0.082). Within individual tracts, all associations became non‑significant 
when analyses were adjusted for multiple comparisons. Using the voxel‑wise approach, we identified 
a small cluster in the left lateral frontal lobe where children with greater upper‑body muscular fitness 
showed higher FA  (PFWE-corrected = 0.042). Although our results cannot conclude physical fitness is related 
to white matter microstructure in children with overweight/obesity; those findings indicate that the 
association of muscular fitness with white matter microstructure might be more focal on frontal areas 
of the brain, as opposed to global differences.

Childhood is a critical period for  neurodevelopment1, especially sensitive to a number of health-related factors 
that could have an influence on the  brain2,3. In particular, physical fitness (i.e., the capacity to perform physical 
activity) is considered a powerful marker of health in children and  adolescents4. Physical fitness is composed 
of a set of physical components such as cardiorespiratory fitness (i.e. the capacity of the cardiovascular and 
respiratory systems to carry out prolonged strenuous exercise), muscular fitness (i.e. the capacity to exert work 
against a resistance), and motor fitness (i.e. the ability to move the body as fast as possible)4. Previous evidence 
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suggests that higher physical fitness levels are positively associated with a better physical and mental health in 
children and adolescents, both  immediately4, 5 and later in  life6,7. In addition, recent research has also shed light 
on the positive role of physical fitness on brain health. For instance, an American College of Sports Medicine 
(ACSM) Position Stand based on physical fitness and brain suggested that physical fitness may have a positive 
influence on brain structure in  children2. However, few studies have explored the extent to which physical fitness 
is associated with white matter microstructure during  childhood8,9.

White matter development includes further axon myelination via thickening of the myelin sheaths, axonal 
growth, and increasing calibre of fibre  tracts10. Particularly, white matter is required for efficient transmission of 
information between brain areas into structural networks to support cognitive function and mental  health11,12. 
To date, only two studies have examined the association between physical fitness and white matter micro-
structure in young  people8,9. Specifically, cardiorespiratory fitness was positively associated with white matter 
microstructure (i.e., corpus callosum, corona radiata and superior longitudinal fasciculus (SLF)) in  children8; 
whereas among, adolescents, cardiorespiratory fitness was negatively associated with white matter microstruc-
ture in the corticospinal tract (CST)9. Apart from cardiorespiratory fitness, there are two other physical fitness 
components (i.e., muscular fitness and motor fitness) that have been proven to differentially influence physical 
and brain health during  childhood4,13. However, previous studies addressing the relationship between physical 
fitness and white matter microstructure only focused on cardiorespiratory fitness and did not examine muscular 
fitness or motor fitness.

Lastly, previous literature suggests that excess body mass has been linked to a different structural  connectivity14 
and white  matter15 development in children. For instance, compared with normal weight children, obese chil-
dren showed differences in white matter organization, mainly in frontal and temporal brain  regions15. However, 
association between physical fitness and white matter microstructure, in pediatric populations, has only been 
studied in normal-weight  youths8,9. Taking into account the lack of studies testing the association between dif-
ferent components of physical fitness and white matter microstructure in children, as well as, the previously 
observed white matter differences in children with overweight or obesity, there is a clear need for studies that 
examine how different components of physical fitness (i.e., cardiorespiratory fitness, muscular fitness and motor 
fitness) associate with white matter microstructure in younger populations, and particularly in children with 
overweight or obesity.

Therefore, the aim of the present study was to examine the associations of components of physical fitness with 
white matter microstructure in children with overweight or obesity. On the basis of previous  literature8,9, the 
general hypothesis was that higher levels of physical fitness would relate to greater white matter microstructure 
in children with overweight or obesity. However, a specific hypothesis about the potential strength or anatomical 
location of these relationships remained open.

Materials and methods
Study design and participants. This cross-sectional study is part of the ActiveBrains project (https ://profi 
th.ugr.es/activ ebrai ns?lang=en), a randomized controlled trial, with the primary aim of examining the effects of 
exercise on brain, cognition and academic performance in children with overweight or obesity according to sex 
and age specific World Obesity Federation cut-off  points16,17. The complete methodology of the project has been 
described  elsewhere18. In total, 110 children with overweight or obesity, ages 8-to-11 years, were recruited from 
Granada (southern Spain). Of these, 104 (10.04 ± 1.15 years old; 43 girls) were included in the present analyses. 
Data were collected from November 2014 to February 2016. Parents or legal guardians were informed of the 
goal of the study and written informed parental and child consents were obtained. This study was conducted 
according to the Declaration of Helsinki, approved by the Human Research Ethics Committee of the University 
of Granada, and registered in ClinicalTrials.gov (identifier: NCT02295072).

Physical fitness components and magnetic resonance imaging (MRI) procedure. Physical fit‑
ness components. Physical fitness components (i.e., cardiorespiratory fitness, muscular fitness, and motor fit-
ness) were assessed using the extended version of the ALPHA (Assessing Levels of Physical fitness and Health 
in Adolescents) health-related physical fitness test  battery19. This battery has been shown to be valid, reliable, 
feasible, and safe for the assessment of the physical fitness components in children and  adolescents19.

Cardiorespiratory fitness was estimated by the 20-m shuttle-run  test20. This test was always performed at 
the end of the fitness battery testing session. The total number of completed laps were registered. Upper- and 
lower-body muscular fitness were assessed using the handgrip strength test and the standing long jump test, 
respectively. A digital hand dynamometer with an adjustable grip (TKK 5101 Grip D, Takei, Tokyo, Japan) was 
used to assess upper-body muscular fitness. Each child performed the test twice, and the maximum scores of left 
and right hands were averaged and used as a measurement of absolute upper-body muscular fitness in kilograms 
(kg). The standing long jump test was performed three times and the longest jump was recorded in centimeters 
(cm) as a measurement of relative lower-body muscular fitness. In addition, we computed a relative-to-body 
weight measurement from upper body muscular fitness (kg/body weight) and an absolute measurement from 
lower body muscular fitness (cm * kg), according to previous research in children with  obesity21. Motor fitness 
was assessed using the 4 × 10-m shuttle-run test. Participants were required to run back and forth twice between 
two lines 10-m apart. Children were instructed to run as fast as possible and every time they crossed any of the 
lines, they were instructed to pick up (the first time) or exchange (second and third time) a sponge that had 
earlier been placed behind the lines. The test was performed twice and the fastest time was recorded in seconds. 
Since a longer completion time indicates a lower fitness level, for analysis purposes we inverted this variable by 
multiplying test completion time (s) by − 1. Thus, higher scores indicated higher motor fitness levels.

https://profith.ugr.es/activebrains?lang=en
https://profith.ugr.es/activebrains?lang=en
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Image acquisition. MRI data were collected with a 3.0 T Siemens Magnetom Tim Trio scanner (Siemens Medi-
cal Solutions, Erlangen, Germany). Diffusion tensor imaging (DTI) data were acquired using an echo planar 
imaging (EPI) sequence with the following parameters: repetition time (TR) = 3,300 ms, echo time (TE) = 90 ms, 
flip angle = 90, matrix = 128 × 128, field of view (FOV) = 230 mm × 230 mm, slice thickness = 4 mm, number of 
slices = 25 and voxel resolution = 1.8 × 1.8 × 4 mm3. One volume without diffusion weighting (b = 0 s/mm2) and 
30 volumes with diffusion weighting (b = 1000 s/mm2) were collected.

Image preprocessing. DTI is able to sample features of the microstructural architecture of white  matter22. To 
quantify total DTI metrics, we use fractional anisotropy (FA) and mean diffusivity (MD), as two of the most 
common derived scalar metrics from  DTI23. FA expresses the degree to which water diffuses preferentially along 
one axis, and has shown to increase with  age23 during development and to be lower in the context of various 
neurological and psychiatric  diseases24. MD is a scalar describing the average diffusion in all directions, with 
higher levels indicating relatively unimpeded diffusion (i.e., negatively correlated with FA)25.

Functional MRI of the Brain Software Library (FSL) (https ://fsl.fmrib .ox.ac.uk) was used to processed MRI 
 data26,27. First, images were adjusted for minor head  motion28, which included a Gaussian process for outlier 
 replacement29. Then, the resulting transformation matrices were used to rotate the diffusion gradient direction 
 table30,31. Non-brain tissue was removed using the FSL Brain Extraction  Tool32. Lastly, the diffusion tensor was 
fit, and common scalar maps (i.e., FA and MD) were subsequently computed.

Probabilistic fiber tractography. Fully automated probabilistic fiber tractography was performed using the 
FSL plugin, “AutoPtx” (https ://fsl.fmrib .ox.ac.uk/fsl/fslwi ki/AutoP tx). Diffusion data were processed using the 
Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques (BEDPOSTx), accounting 
for two fiber orientations at each  voxel33,34. Then, for each subject, the FA map was aligned to the FMRIB-58 FA 
template image with the FSL nonlinear registration tool (FNIRT). Next, the inverse of this nonlinear warp field 
was computed, and applied to a series of predefined seed, target, exclusion, and termination masks provided by 
the AutoPtx  plugin35. Probabilistic fiber tracking was then execute with the FSL Probtrackx module using these 
supplied tract-specific masks (i.e., seed, target, etc.) that were warped to the native diffusion image space of each 
 subject33. Lastly, the resulting path distributions were normalized to a scale from 0 to 1 using the total number 
of successful seed-to-target attempts and were subsequently thresholded to remove low-probability voxels likely 
related to noise.

White matter tract segmentation was performed by thresholding the normalized tract density images based 
on previously established values by de Groot et al.35 (i.e., cingulate gyrus part of cingulum (CGC): 0.01, CST: 
0.005, forceps major (FMA): 0.005, forceps minor (FMI): 0.01, inferior longitudinal fasciculus (ILF): 0.005, SLF: 
0.001, uncinate fasciculus (UNC): 0.01). Average FA and MD values were then computed for each fiber bundle. 
Connectivity distributions were estimated for the 7 large fiber bundles previously named and selected based 
on previous  reports36–38. Average of FA and MD in the left and right hemisphere was calculated in those tracts 
present in both hemispheres (i.e., CGC, CST, FMA, FMI, ILF, SLF, and UNC).

To assess whether physical fitness components (i.e., cardiorespiratory fitness, muscular fitness, and motor 
fitness) were related to global measures of white matter microstructure (i.e., global FA, MD), selected tracts 
were combined into a single factor (“global factor”). The global factor was computed by averaging all tracts and 
weighting this average by the size (volume) of the tracts.

Tract‑based spatial statistics. Tract-based spatial statistics (TBSS) was used to perform voxel-wise statistical 
analyses of the DTI data (https ://fsl.fmrib .ox.ac.uk/fsl/fslwi ki/TBSS/UserG uide39. A mean FA image was calcu-
lated and thinned to create a mean FA skeleton, which represents the center of white matter tracts. A threshold 
of FA > 0.2 was selected to exclude voxels not belonging to white matter. FA maps of each participant were then 
projected onto the skeleton. The same procedure was applied to the MD maps.

Image quality assurance. Raw image quality was assessed via visual inspection. In addition, the sum-of-squares 
error (SSE) maps from the tensor estimation were calculated and visually inspected for structured  noise12. Image 
quality was rated using a 4-point scale, with 1 = “excellent”, 2 = “minor”, 3 = “moderate”, and 4 = “severe”. Datasets 
determined to be of insufficient quality (i.e., moderate and severe) for statistical analyses were excluded (n = 2). 
Lastly, probabilistic tractography data were inspected visually. First, the native space FA map registration was 
inspected to ensure images were all properly aligned to the template (masks were properly mapped to native 
space). Second, all tracts were visualized to ensure accurate path reconstruction.

Covariates. Body weight and height were performed with participants having bare feet and wearing under-
clothes; weight was measured with an electronic scale (SECA 861, Hamburg, Germany) and height (cm) with 
a stadiometer (SECA 225, Hamburg, Germany). Both measurements were performed twice, and averages were 
used. BMI was expressed in kg/m2. PHV is a common indicator of maturity in children and  adolescents40. PHV 
was obtained from anthropometric variables (weight, height and/or seated height) using Moore’s  equations41. 
The total composite IQ was assessed by the Spanish version of the Kaufman Brief Intelligence Test (K-BIT), a 
validated and reliable  instrument42. This test consists of vocabulary and matrices subtests which provided indica-
tors of crystallized intelligence and fluid intelligence, respectively. The typical punctuation of both, crystallized 
and fluid indicators of intelligence, were computed and a total intelligence score was obtained from the sum of 
them. Parental education was assessed by the educational level of mother and father reported (i.e., no elemen-
tary school, elementary school, middle school, high school and university completed). Parent answers were 
combined into a trichotomous variable (i.e., none of the parents had a university degree, one of the parents had 

https://fsl.fmrib.ox.ac.uk
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide
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a university degree and both parents had a university degree). Lastly, the Behavior Assessment System for Chil-
dren (BASC), level-2 for children aged 6–12 years old, was used to assess behavioral and emotional functioning. 
A total behavioral symptoms index (including aggressively, hyperactivity, attention problems, atypical behaviors, 
anxiety and depression) was extracted from the  questionnaire43.

Statistical analysis. All analyses, with the exception of TBSS analyses, were performed using the Statisti-
cal Package for Social Sciences (IBM SPSS Statistics for Windows, version 22.0, Armonk, NY, P set at < 0.05). 
The characteristics of the study sample are presented as means and standard deviations (SD) or percentages. In 
addition, we tested the correlation of BMI with global DTI metrics and physical fitness components. Interac-
tion analyses of sex with physical fitness variables were also performed. No significant interactions with sex 
were found (P ≥ 0.10) and therefore analyses are presented for the whole sample. In addition, we explored the 
association of several confounders (i.e., sex, PHV, BMI, IQ, parental education, and emotional and behavioral 
problems) with tractography-derived white matter variables using a Pearson’s bivariate correlation analysis (data 
no shown). Among all of the potential confounders, parental education, socioeconomic status, and emotional 
and behavioral problems were not significantly related to white matter microstructure (all P values > 0.1) and 
were therefore excluded from the subsequent analyses.

Separate linear regression analyses adjusted for sex, PHV, BMI and IQ were performed to examine the asso-
ciation between physical fitness components and global-extracted DTI scalar metrics (i.e., global FA and MD). 
Each regression model examined separately the relationships between a single physical fitness component and 
a single DTI scalar metric.

Then, in order to determine whether the association of physical fitness with white matter microstructure was 
indeed only global or restricted to a particular set of white matter bundles, and to facilitate comparison with 
future studies, we applied two commonly used methodologies: (1) probabilistic tractography of large, commonly 
studied white matter tracts and (2) TBSS, which is a voxel-based approach. For probabilistic tractography analy-
ses, false discovery rate (FDR. Benjamini–Hochberg method) was used to adjust for multiple  comparisons44. 
Correction for multiple comparisons was based on 7 tracts, 2 DTI metrics and 6 physical fitness components 
for a total of 84 tests. For TBSS analyses, the association between physical fitness components and DTI scalar 
metrics were tested voxel-wise using general linear models, including sex, PHV, BMI and IQ as covariates. A 
permutation-based statistical approach (5,000 permutations) within FSL’s  Randomise39 was performed including 
the threshold-free cluster enhancement (TFCE) multiple comparison correction method. Significance was set at 
P < 0.05, corrected for family-wise error.

Results
Table 1 presents demographic participant characteristics. No correlation was found between BMI and global 
DTI metrics. However, a higher BMI was correlated with a lower cardiorespiratory fitness, motor fitness and 
relative muscular fitness (r ranges from − 0.490 to − 0.341). Of note, BMI was positively correlated with absolute 
muscular fitness, including upper-body muscular fitness (r = 0.276) and lower-body muscular fitness (r = 0.372). 
The association between physical fitness components (i.e., cardiorespiratory fitness, muscular fitness, and motor 
fitness) and global FA and global MD is shown in Table 2. Briefly, no associations were found between physical 
fitness components and any of the global white matter metrics (i.e., FA and MD) (all P values > 0.05).

Association between physical fitness components and tract-specific FA and MD is shown in Table 3. Car-
diorespiratory fitness was positively associated with FA in the ILF (β = 0.273, P = 0.039). In addition, relative 
upper-body muscular fitness was negatively associated with MD in the ILF (β = − 0.237, P = 0.035). All these 
associations became non-significant when analyses were adjusted for multiple comparisons (all P values > 0.05). 
No association was found between motor fitness and tract-specific FA and MD (all P values > 0.05).

Figure 1 presents the results of the voxel-wise DTI parameter analyses (i.e. TBSS). A statistically sig-
nificant positive association between absolute upper-body muscular fitness and FA in the left lateral frontal 
lobe  (XMNI = − 25, Y = 30, Z = 34, cluster size = 13,  PFWE‑corrected = 0.042) was found after correction for multiple 
comparisons.

Discussion
The aim of the present study was to examine the associations of physical fitness components (i.e., cardiorespira-
tory fitness, muscular fitness, and motor fitness) with white matter microstructure in children with overweight 
or obesity. No significant association was found between physical fitness components and global DTI scalar 
metrics (i.e., global FA, and global MD). Within individual tracts, all associations became non-significant when 
analyses were adjusted for multiple comparisons. However, results of the voxel-wise DTI parameter analyses 
showed that absolute upper-body muscular fitness was positively associated with FA in the left lateral frontal 
lobe after adjusting for multiple comparisons.

Cardiorespiratory fitness was not related to global metrics of DTI (i.e., global FA, and global MD) in children 
with overweight or obesity. The current study found that cardiorespiratory fitness was positively associated 
with FA in the ILF, although this association became non-significant when analyses were adjusted for multiple 
comparisons. These findings were consistent with the TBBS analyses showing no association with cardiores-
piratory fitness. Chaddock-Heyman et al.8, using data from the FITKids project, found that higher levels of 
cardiorespiratory fitness were associated with greater FA in sections of the corpus callosum, corona radiata and 
SLF in children. These associated tracts differ from our results and may be partially explained by the different 
analysis approach used (i.e., Chaddock et al. used region-of-interest analyses vs. our study that used data-driven 
analysis adjusted for multiple comparison). In addition, measurement differences differ between the studies 
(e.g., different methodology of cardiorespiratory fitness assessment, differences among the MRI scanners or the 
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MRI sequence acquisition parameters, participant demographics, participants BMI, etc.). Of note, our group, 
using data from the ActiveBrains and FITKids project, recently published that the white matter brain regions 
volumes associated with cardiorespiratory fitness were mainly located in the SLF and the ILF in children with 
overweight or obesity of the same approximate  ages45. Consequently, although our results cannot conclude that 
cardiorespiratory fitness is related to white matter microstructure in children with overweight or obesity, these 
results, in line with previous  literature8, seem to indicate that the association between cardiorespiratory fitness 
and white matter microstructure in children with overweight or obesity might be more focal than global white 
matter, and related to long association fiber tracts.

Regarding the other two physical fitness components, both muscular and motor fitness were not related to 
global metrics of DTI (i.e., global FA, and global MD) in children with overweight or obesity. In addition, while 
motor fitness was not associated with tract-specific white matter microstructure, relative upper-body muscular 
fitness was negatively associated with MD in the ILF. Of note, this association became non-significant when 
analyses were adjusted for multiple comparisons. However, when using the TBSS approach, we identified a small 
cluster in the left lateral frontal lobe where children with greater absolute upper-body muscular fitness showed 

Table 1.  Descriptive sample characteristics. Values are expressed as means ± standard deviations, unless 
otherwise indicated. Test-KBIT = The Kaufman Brief Intelligence Test.

Mean/% SD

Sex

Girls,% 41.35

Age (years) 10.04  ± 1.15

Peak height velocity (years)  − 1.90  ± 1.04

Body Mass Index 26.68  ± 3.63

Body Mass Index, %

 Overweight 26.9

 Obesity type I 43.3

 Obesity type II 29.8

Parental education university level (%)

 Neither parent 63.46

 One parent 19.23

 Both parents 17.31

Intelligence (Test-KBIT) 48.10  ± 24.97

Physical fitness components

 Cardiorespiratory fitness

  Last completed lap (20 m shuttle run) 16.14  ± 7.88

 Muscular fitness

  Relative upper-body muscular fitness (kg/kg) 0.30  ± 0.06

  Relative lower-body muscular fitness (cm) 104.95  ± 18.64

  Absolute upper-body muscular fitness (kg) 16.77  ± 4.22

  Absolute lower-body muscular fitness 
(cm × kg) 5,825.13  ± 1,450.83

 Motor fitness (s) 15.12  ± 1.60

Table 2.  Association of physical fitness components with global FA, and global MD in children with 
overweight/obesity (n = 89). Lineal regression model was adjusted for sex, peak height velocity, body mass 
index (kg/m2) and intelligence quotient. FA = Fractional anisotropy (high FA corresponds to preferential 
diffusion along one direction an indication a high level of tissue organization), MD = mean diffusivity (high 
MD corresponds to relatively unimpeded water diffusion and indicates regions of low tissue organization). 
Values are standardized regression coefficients (β).

Global FA Global MD

β P β P

Cardiorespiratory fitness (laps) 0.104 0.473  − 0.026 0.851

Relative upper-body muscular fitness (kg/kg) 0.131 0.328  − 0.155 0.225

Relative lower-body muscular fitness (cm)  − 0.173 0.178 0.209 0.085

Absolute upper-body muscular fitness (kg) 0.114 0.452  − 0.221 0.127

Absolute lower-body muscular fitness (cm × kg)  − 0.279 0.099 0.278 0.082

Motor fitness  (s−1)  − 0.089 0.547 0.022 0.876
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higher FA, after adjusting for multiple comparison. Previous literature regarding both muscular and motor fitness 
in relation to white matter microstructure is not available, which hampers direct comparisons with other stud-
ies. Nonetheless, in line with our results, previous studies found that adolescents with higher muscular fitness, 
specifically upper-body muscular fitness, had a 20–30% lower risk of death from suicide and were 15–65% less 
likely to have any psychiatric diagnosis such as schizophrenia and mood  disorders46. In addition, it was found 
that higher muscular fitness during adolescence predicts lower risk of obtaining disability pension due to all 
 causes7. Of note, our group recently published that higher upper-body muscular fitness was negatively associ-
ated with stress and negative affect, and positively associated with self-esteem in children with overweight or 
 obesity47. Therefore, we speculate that muscular fitness plays an undefined role in white matter microstructure 
which in turn could mediate or moderate mental health. Future work with a larger sample should confirm or 
contrast this hypothesis.

Table 3.  Association of physical fitness components and tract-specific FA and MD in children with 
overweight or obesity. Lineal regression model was adjusted for sex, peak height velocity, body mass index (kg/
m2) and intelligence quotient. FA = Fractional anisotropy (high FA corresponds to preferential diffusion along 
one direction an indication a high level of tissue organization), MD = mean diffusivity (high MD corresponds 
to relatively unimpeded water diffusion and indicates regions of low tissue organization). MF = Muscular 
fitness. Cingulate gyrus part of cingulum (CGC), corticospinal tract (CST), inferior longitudinal fasciculus 
(ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus (UNC), forceps major (FMA), and forceps 
minor (FMI). Values are standardized regression coefficients (β). Statistically significant values are shown 
in bold (P < 0.05), and borderline significant values are shown in italics and bold (P < 0.1). *P < 0.05. All the 
associations showed in the table disappeared when analyses were adjusted for multiple comparisons. aIn the 
cingulate gyrus part of cingulum n = 89.

Cardiorespiratory 
fitness

Relative upper-
body MF

Relative lower-
body MF

Absolute upper-
body MF

Absolute lower-
body MF Motor fitness

FA MD FA MD FA MD FA MD FA MD FA MD

CGC a  − 0.126  − 0.107  − 0.010  − 0.155  − 0.116 0.070  − 0.064  − 0.154  − 0.159 0.181  − 0.234 0.003

CST 0.100  − 0.089  − 0.011  − 0.106  − 0.098 0.047  − 0.003  − 0.108  − 0.106 0.084 0.032  − 0.072

ILF 0.273*  − 0.103 0.212  − 0.237* 0.024 0.084 0.159  − 0.214  − 0.075 0.205 0.151  − 0.040

SLF 0.119 0.006 0.152  − 0.138  − 0.048 0.111 0.197  − 0.236  − 0.056 0.080 0.056  − 0.026

UNC  − 0.010  − 0.060 0.006  − 0.081 0.050 0.029  − 0.052  − 0.089 0.050 0.062  − 0.021  − 0.016

FMA 0.182  − 0.023 0.106 0.062  − 0.122 0.183 0.057 0.032  − 0.270 0.272 0.090 0.004

FMI 0.129  − 0.151  − 0.120 0.114  − 0.075 0.100  − 0.152 0.069  − 0.164 0.086  − 0.079  − 0.070

Figure 1.  Positive association between absolute upper-body muscular fitness and FA in the left lateral frontal 
lobe (Montreal Neurological Institute—MNI-coordinates x = − 25, y = 30, z = 34; cluster size = 13; corrected 
P = 0.042). A = sagittal view and B = axial view. The colour bar represents P values, with yellow colour indicating 
higher significant association. The left hemisphere corresponds to the right side of the axial view.
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The underlying plausible mechanisms of the role of muscular fitness on white matter in children with over-
weight or obesity cannot be elucidated in our study. However, previous literature suggested that muscle contrac-
tion induced peripheral factors (e.g., irisin, and cathepsin B) which passes through the blood–brain barrier to 
enhance brain-derived neurotrophic factors and hence neurogenesis, memory and  learning48. However, it is 
unknown whether this myokine is a determining factor in muscle-induced enhanced white matter microstructure 
in children. It has been also suggested that exercised skeletal muscle leads to upregulation of PGC1α in mouse 
model and human skeletal muscle  cells49. Likewise, endurance exercise training can lead to activation of the 
PGC1α, which stimulates the expression of kynurenine aminotransferase within skeletal  muscle49. Moreover, 
higher expression of kynurenine aminotransferase can lead to increased conversion of neurotoxic kynurenine 
into neuroprotective kynurenic acid. The fact that kynurenic acid is not able to cross the blood–brain barrier 
protects the brain from stress-induced kynurenine accumulation, neuroinflammation and changes in synaptic 
plasticity. Therefore, although much still needs to be explored about the mechanisms that explain a relationship 
between muscular fitness and white matter microstructure in children, based on previous evidence in animal 
models, the positive associations between upper-body muscular fitness and greater FA in the frontal lobe is 
neurologically and biologically plausible.

The limitations of this study include (1) its cross-sectional design, which does not allow us to draw causal 
associations; (2) our focus on children with overweight or obesity, which limits the generalizability of our find-
ings to the entire range of the BMI distribution; (3) the relatively small sample size, which could explain the few 
associations found in the analyses, although the sample size is respectable for neuroimaging studies in children; 
(4) and the voxel size which was a 4-mm-section nonisotropic voxel (1.8 × 1.8 × 4 mm3). Therefore, FA could be 
underestimated in regions containing crossing fibers (i.e., SLF). On the other hand, the FA measured in regions 
without crossing fibers (i.e., CST) is not prone to  underestimation50. Lastly, the effect sizes for the association 
between physical fitness components and white matter microstructure were statistically non-significant or rela-
tively small. Larger effects may not be expected due to the preservation of white matter microstructural devel-
opment in the majority of young people, which probably has not yet achieved the maturational peak in most of 
the  tracts23. Key strengths of the current study are the inclusion of neuroimaging data, and the combination of 
probabilistic fiber tractography and voxel-wise analyses of white matter tracts.

Conclusion
We found that physical fitness components are not associated with global DTI metrics (i.e., global FA, and 
global MD). Within individual tracts, all associations became non-significant when analyses were adjusted for 
multiple comparisons. However, using the TBSS approach, we identified a small cluster in the left lateral frontal 
lobe where children with greater absolute upper-body muscular fitness showed higher FA, after adjusting for 
multiple comparison. Our results cannot conclude that physical fitness components are related to white matter 
microstructure; however, the results seem to indicate that the association between physical fitness components 
(i.e., specifically muscular fitness) and white matter microstructure is more focal on specific tracts, as opposed to 
global differences. Future longitudinal and randomized control trials should explore the role of different physical 
fitness components on white matter microstructure.
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