1,311 research outputs found

    A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods.

    Get PDF
    We provide a new approach to automatic business forecasting based on an extended range of exponential smoothing methods. Each method in our taxonomy of exponential smoothing methods can be shown to be equivalent to the forecasts obtained from a state space model. This allows (1) the easy calculation of the likelihood, the AIC and other model selection criteria; (2) the computation of prediction intervals for each method; and (3) random simulation from the underlying state space model. We demonstrate the methods by applying them to the data from the M-competition on the M3-competition.Automatic forecasting, exponential smoothing, prediction intervals, state space models.

    Stuffed Rare Earth Pyrochlore Solid Solutions

    Full text link
    Synthesis and crystal structures are described for the compounds Ln2(Ti2-xLnx)O7-x/2, where Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu, and x ranges from 0 to 0.67. Rietveld refinements on X-ray powder diffraction data indicate that in Tb and Dy titanate pyrochlores, extra Ln3+ cations mix mainly on the Ti4+ site with little disorder on the original Ln3+ site. For the smaller rare earths (Ho-Lu), stuffing additional lanthanide ions results in a pyrochlore to defect fluorite transition, where the Ln3+ and Ti4+ ions become completely randomized at the maximum (x=0.67). In all of these Ln-Ti-O pyrochlores, the addition of magnetic Ln3+ in place of nonmagnetic Ti4+ adds edge sharing tetrahedral spin interactions to a normally corner sharing tetrahedral network of spins. The increase in spin connectivity in this family of solid solutions represents a new avenue for investigating geometrical magnetic frustration in the rare earth titanate pyrochlores.Comment: 25 pages, 7 figures, submitted to J. Solid State Che

    Dynamical noncommutativity and Noether theorem in twisted phi^*4 theory

    Full text link
    A \star-product is defined via a set of commuting vector fields X_a = e_a^\mu (x) \partial_\mu, and used in a phi^*4 theory coupled to the e_a^\mu (x) fields. The \star-product is dynamical, and the vacuum solution phi =0, e_a^\mu (x)=delta_a^\mu reproduces the usual Moyal product. The action is invariant under rigid translations and Lorentz rotations, and the conserved energy-momentum and angular momentum tensors are explicitly derived.Comment: 15 pages LaTeX, minor typos, added reference

    The Hamiltonian BRST quantization of a noncommutative nonabelian gauge theory and its Seiberg-Witten map

    Full text link
    We consider the Hamiltonian BRST quantization of a noncommutative non abelian gauge theory. The Seiberg-Witten map of all phase-space variables, including multipliers, ghosts and their momenta, is given in first order in the noncommutative parameter θ\theta. We show that there exists a complete consistence between the gauge structures of the original and of the mapped theories, derived in a canonical way, once we appropriately choose the map solutions.Comment: 10 pages, Latex. Address adde

    Kontsevich product and gauge invariance

    Full text link
    We analyze the question of U⋆(1)U_{\star} (1) gauge invariance in a flat non-commutative space where the parameter of non-commutativity, θμν(x)\theta^{\mu\nu} (x), is a local function satisfying Jacobi identity (and thereby leading to an associative Kontsevich product). We show that in this case, both gauge transformations as well as the definitions of covariant derivatives have to modify so as to have a gauge invariant action. We work out the gauge invariant actions for the matter fields in the fundamental and the adjoint representations up to order θ2\theta^{2} while we discuss the gauge invariant Maxwell theory up to order θ\theta. We show that despite the modifications in the gauge transformations, the covariant derivative and the field strength, Seiberg-Witten map continues to hold for this theory. In this theory, translations do not form a subgroup of the gauge transformations (unlike in the case when θμν\theta^{\mu\nu} is a constant) which is reflected in the stress tensor not being conserved.Comment: 7 page

    Noncommutativity, generalized uncertainty principle and FRW cosmology

    Full text link
    We consider the effects of noncommutativity and the generalized uncertainty principle on the FRW cosmology with a scalar field. We show that, the cosmological constant problem and removability of initial curvature singularity find natural solutions in this scenarios.Comment: 8 pages, to appear in IJT

    Divergent effects of static disorder and hole doping in geometrically frustrated b-CaCr2O4

    Full text link
    The gallium substituted and calcium deficient variants of geometrically frustrated b-CaCr2O4, b-CaCr2-2xGa2xO4 (0.02<= x<= 0.25) and b-Ca1-yCr2O4 (0.075<= y<= 0.15), have been investigated by x-ray powder diffraction, magnetization and specific heat measurements. This allows for a direct comparison of the effects, in a geometrically frustrated magnet, of the static disorder that arises from non-magnetic substitution and the dynamic disorder that arises from hole doping. In both cases, disturbing the Cr3+ lattice results in a reduction in the degree of magnetic frustration. On substitution of Ga, which introduces disorder without creating holes, a gradual release of spins from ordered antiferromagnetic states is observed. In contrast, in the calcium deficient compounds the introduction of holes induces static ferrimagnetic ordering and much stronger perturbations of the b-CaCr2O4 host.Comment: 23 pages, 10 figure

    Time-Space Noncommutativity in Gravitational Quantum Well scenario

    Get PDF
    A novel approach to the analysis of the gravitational well problem from a second quantised description has been discussed. The second quantised formalism enables us to study the effect of time space noncommutativity in the gravitational well scenario which is hitherto unavailable in the literature. The corresponding first quantized theory reveals a leading order perturbation term of noncommutative origin. Latest experimental findings are used to estimate an upper bound on the time--space noncommutative parameter. Our results are found to be consistent with the order of magnitude estimations of other NC parameters reported earlier.Comment: 7 pages, revTe

    Tunneling of massive and charged particles from noncommutative Reissner-Nordstr\"{o}m black hole

    Full text link
    Massive charged and uncharged particles tunneling from commutative Reissner-Nordstrom black hole horizon has been studied with details in literature. Here, by adopting the coherent state picture of spacetime noncommutativity, we study tunneling of massive and charged particles from a noncommutative inspired Reissner-Nordstrom black hole horizon. We show that Hawking radiation in this case is not purely thermal and there are correlations between emitted modes. These correlations may provide a solution to the information loss problem. We also study thermodynamics of noncommutative horizon in this setup.Comment: 10 pages, 2 figure
    • …
    corecore