158 research outputs found

    The Value of Transcranial Doppler in Predicting Cerebral Ischaemia During Carotid Endarterectomy

    Get PDF
    AbstractObjectives: transcranial Doppler (TCD) measurement of middle cerebral artery velocity (MCAV) is an indirect method of assessing cerebral blood flow and therefore predicting patients at risk of stroke during carotid endarterectomy (CEA), and may be used to determine the need for shunting. This study evaluates the accuracy of three accepted TCD criteria in predicting the need for a shunt. Design: prospective study. Methods: one hundred and twenty consecutive CEA were performed under loco/regional anaesthesia. Patients monitored by TCD and Awake neurological examination were included. Shunts were inserted if there was neurological deterioration. Awake patient monitoring was compared with the three TCD criteria. Results: inadequate TCD recordings were obtained in 16 operations (13%). In the remainder (104 cases), 12 developed symptoms of cerebral ischaemia and required a shunt (12%). Comparisons with the three accepted criteria were as follows: (1) m MCAV <30 cm/s had a sensitivity, specificity, PPV and NPV of 92%, 49%, 19%, and 98%, respectively; (2) clamp/pre-clamp ratio <0.6 had a sensitivity, specificity, PPV and NPV of 92%, 75%, 33% and 99%, respectively; (3) greater than 50% reduction in m MCAV had a sensitivity, specificity, PPV and NPV valves of 83%, 77%, 32% and 97%, respectively. Conclusions: TCD flow velocities are not a reliable method for detecting cerebral ischaemia and therefore determining the need for a shunt in CEA

    Three-dimensional character of the deformation twin in magnesium

    Get PDF
    Deformation twins are three-dimensional domains, traditionally viewed as ellipsoids because of their two-dimensional lenticular sections. In this work, we performed statistical analysis of twin shapes viewing along three orthogonal directions: the ‘dark side’ (DS) view along the twin shear direction (η1), the twinning plane normal (TPN) view (k1) and the ‘bright side’ (BS) view along the direction λ(=k1 × η1). Our electron back-scatter diffraction results show that twins in the DS and BS views normally exhibit a lenticular shape, whereas they show an irregular shape in the TPN view. Moreover, the findings in the TPN view revealed that twins grow faster along λ the lateral direction than along η1 the forward propagation direction at the initial stages of twin growth. These twin sections are irregular, indicating that growth is locally controlled and the overall shape is not perfectly ellipsoidal. We explain these findings using atomistic models, and ascribe them to differences in the mobility of the edge and screw components of the twinning dislocations

    Characterizing the boundary lateral to the shear direction of deformation twins in magnesium

    Get PDF
    The three-dimensional nature of twins, especially the atomic structures and motion mechanisms of the boundary lateral to the shear direction of the twin, has never been characterized at the atomic level, because such boundary is, in principle, crystallographically unobservable.We thus refer to it here as the dark side of the twin. Here, using high-resolution transmission electron microscopy and atomistic simulations, we characterize the dark side of {1012} deformation twins in magnesium. It is found that the dark side is serrated and comprised of {1012} coherent twin boundaries and semi-coherent twist prismatic–prismatic {2110} boundaries that control twin growth. The conclusions of this work apply to the same twin mode in other hexagonal close-packed materials, and the conceptual ideas discussed here should hold for all twin modes in crystalline materials

    Characterizing the boundary lateral to the shear direction of deformation twins in magnesium

    Get PDF
    The three-dimensional nature of twins, especially the atomic structures and motion mechanisms of the boundary lateral to the shear direction of the twin, has never been characterized at the atomic level, because such boundary is, in principle, crystallographically unobservable.We thus refer to it here as the dark side of the twin. Here, using high-resolution transmission electron microscopy and atomistic simulations, we characterize the dark side of {1012} deformation twins in magnesium. It is found that the dark side is serrated and comprised of {1012} coherent twin boundaries and semi-coherent twist prismatic–prismatic {2110} boundaries that control twin growth. The conclusions of this work apply to the same twin mode in other hexagonal close-packed materials, and the conceptual ideas discussed here should hold for all twin modes in crystalline materials

    Front Crawl Is More Efficient and Has Smaller Active Drag Than Backstroke Swimming: Kinematic and Kinetic Comparison Between the Two Techniques at the Same Swimming Speeds.

    Get PDF
    The purpose of this study was to investigate differences in Froude efficiency (η F ) and active drag (D A ) between front crawl and backstroke at the same speed. η F was investigated by the three-dimensional (3D) motion analysis using 10 male swimmers. The swimmers performed 50 m swims at four swimming speeds in each technique, and their whole body motion during one upper-limb cycle was quantified by a 3D direct linear transformation algorithm with manually digitized video footage. Stroke length (SL), stroke frequency (SF), the index of coordination (IdC), η F , and the underwater body volume (UWV body ) were obtained. D A was assessed by the measuring residual thrust method (MRT method) using a different group of swimmers (six males) due to a sufficient experience and familiarization required for the method. A two-way repeated-measures ANOVA (trials and techniques as the factors) and a paired t-test were used for the outcomes from the 3D motion analysis and the MRT method, respectively. Swimmers had 8.3% longer SL, 5.4% lower SF, 14.3% smaller IdC, and 30.8% higher η F in front crawl than backstroke in the 3D motion analysis (all p < 0.01), which suggest that front crawl is more efficient than backstroke. Backstroke had 25% larger D A at 1.2 m⋅s-1 than front crawl (p < 0.01) in the MRT trial. A 4% difference in UWV body (p < 0.001) between the two techniques in the 3D motion analysis also indirectly showed that the pressure drag and friction drag were probably larger in backstroke than in front crawl. In conclusion, front crawl is more efficient and has a smaller D A than backstroke at the same swimming speed

    Fock Representations of Quantum Fields with Generalized Statistic

    Full text link
    We develop a rigorous framework for constructing Fock representations of quantum fields obeying generalized statistics associated with certain solutions of the spectral quantum Yang-Baxter equation. The main features of these representations are investigated. Various aspects of the underlying mathematical structure are illustrated by means of explicit examples.Comment: 26 pages, Te

    Effects of Test-Driven Development : A Comparative Analysis of Empirical Studies

    Get PDF
    Test-driven development is a software development practice where small sections of test code are used to direct the development of program units. Writing test code prior to the production code promises several positive effects on the development process itself and on associated products and processes as well. However, there are few comparative studies on the effects of test-driven development. Thus, it is difficult to assess the potential process and product effects when applying test-driven development. In order to get an overview of the observed effects of test-driven development, an in-depth review of existing empirical studies was carried out. The results for ten different internal and external quality attributes indicate that test-driven development can reduce the amount of introduced defects and lead to more maintainable code. Parts of the implemented code may also be somewhat smaller in size and complexity. While maintenance of test-driven code can take less time, initial development may last longer. Besides the comparative analysis, this article sketches related work and gives an outlook on future research.Peer reviewe

    EmPHasis-10 health-related quality of life score predicts outcomes in patients with idiopathic and connective tissue disease-associated pulmonary arterial hypertension: results from a UK multi-centre study

    Get PDF
    Health-related quality of life (HRQoL) scores assess symptom burden in pulmonary arterial hypertension (PAH) but data regarding their role in prognostication and risk stratification are limited. We assessed these relationships using the emPHasis-10 HRQoL measure. 1745 patients with idiopathic or connective tissue disease-associated PAH who had completed emPHasis-10 questionnaires between 2014–17 at 6 UK referral centres were identified. Correlations with exercise capacity and WHO functional class (FC) were assessed, and exploratory risk stratification thresholds were tested. Moderate correlations were seen between emPHasis-10 scores and 6-minute walk distance (r=−0.546), incremental shuttle walking distance (r=−0.504) and WHO FC (r=0.497; p all <0.0001). Distribution of emPHasis-10 differed significantly between each WHO FC (p all <0.0001). At multivariate analysis, emPHasis-10, but not WHO FC, was an independent predictor of mortality. In a risk stratification approach, scores of 0–16, 17–33 and 34–50 identified incident patients with one-year mortality of 5%, 10% and 23%, respectively. Survival of patients in WHO FC III could be further stratified using an emPHasis-10 score ≥34 (p<0.01). At follow-up, patients with improved emPHasis-10 had improved exercise capacity (p<0.0001), and patients who transitioned risk groups demonstrated similar survival to patients originally in those risk groups. The emPHasis-10 score is an independent prognostic marker in patients with idiopathic or connective tissue disease-associated PAH. It has utility in risk stratification in addition to currently used parameters. Improvement in emPHasis-10 score is associated with improved exercise capacity
    corecore