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ARTICLE

Three-dimensional character of the deformation
twin in magnesium
Y. Liu 1,2, P.Z. Tang1, M.Y. Gong2,3, R.J. McCabe2, J. Wang3 & C.N. Tomé2

Deformation twins are three-dimensional domains, traditionally viewed as ellipsoids because

of their two-dimensional lenticular sections. In this work, we performed statistical analysis of

twin shapes viewing along three orthogonal directions: the ‘dark side’ (DS) view along the

twin shear direction (η1), the twinning plane normal (TPN) view (k1) and the ‘bright side’ (BS)

view along the direction λ(=k1 × η1). Our electron back-scatter diffraction results show that

twins in the DS and BS views normally exhibit a lenticular shape, whereas they show an

irregular shape in the TPN view. Moreover, the findings in the TPN view revealed that twins

grow faster along λ the lateral direction than along η1 the forward propagation direction at the

initial stages of twin growth. These twin sections are irregular, indicating that growth is locally

controlled and the overall shape is not perfectly ellipsoidal. We explain these findings using

atomistic models, and ascribe them to differences in the mobility of the edge and screw

components of the twinning dislocations.
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Magnesium (Mg) and Mg alloys with hexagonal closed
packed (HCP) structure have potential applications as
structural components and in the transportation

industry due to their high strength-to-weight ratios. Under-
standing the mechanical properties and underlying plasticity
mechanisms is essential for optimizing material processing and
improving performance1–3. HCP metals deform plastically via
dislocation slip and twinning at room temperature. The easy slip
associated with 〈a〉 dislocations on either the (0001) basal plane
or the {10�10} prismatic plane does not accommodate deformation
along c-axis. On the other hand, 〈c+ a〉 dislocations on nonbasal
planes that can contribute to deformation along the c-axis are
difficult to activate at room temperature due to high lattice fric-
tion4–6. As a consequence, twinning represents an alternative
shear mechanism that accommodates plastic deformation along
the c-axis7–9 and so influences the ductility and formability of
HCP metals10–13. In the case of Mg and its alloys, {01�12}
extension twins are most commonly observed (Fig. 1a)14–16.
Twinning that involves three sequential processes: nucleation,
propagation, and growth, are associated with the formation and
migration of twin boundaries (TBs). This work focuses on the
twin morphology at the propagation stage, defined as the twin
having partially or fully traversed the grain, but before it starts
growing in thickness after being arrested at the opposite grain
boundaries (GBs). The goal here is to derive basic knowledge of
the motion mechanisms of TBs, essential to understand
mechanical behavior dominated by twinning processes and
interactions17–20.

Because of the three-dimensional (3D) nature of twin domains,
twin growth involves motion of TBs along directions that are in
the k1 plane and perpendicular to the k1 plane. We analyze this
3D growth by characterizing twins along three directions: the
‘dark side’ (DS) view along the twin shear direction (η1), the
twinning plane normal (TPN) view (k1) and the ‘bright side’ (BS)
view along the direction λ(=k1 × η1). They are identified with

arrows in an HCP structure (Fig. 1a), a 3D schematic (Fig. 1b),
and 2D schematic twin sections (Fig. 1c, d, e). Until now —with a
few recent exceptions21–23—most studies of these 3D domains
have focused only on sections revealing the BS view along the
direction λ. Assuming that nucleation takes place at a GB, a twin
grows through successive nucleation and propagation of twinning
disconnections (terraces). Their passage builds-up a 3D domain
(Fig. 1b) where a finite shear concentrates. These twin domains
appear to be polyhedral and bounded by low-energy steps
and facets formed by the propagation of twinning dislocations
(TDs)24,25.

Extensive studies have been conducted to reveal the char-
acteristics of twins in the BS view, showing normal and forward
TBs, as illustrated in Fig. 1c. The forward TBs exhibit semi-
coherent {01�10} prismatic ||{0002} basal (referred to as BP/PB)
facets observed experimentally in Mg26,27, Cobalt28, Titanium29,
and also in atomistic simulations of Mg30–32. The normal TB
commonly exhibits a serrated appearance composed of {01�12}
coherent twin boundary (CTB) facets and BP/PB steps. By
comparison, there is limited knowledge regarding the lateral
growth of the twin, partly owing to the challenges to observe and
characterize the TBs in the DS view (Fig. 1d). Our recent work
has characterized the lateral TBs at an atomic level, and found
that they are composed of CTBs and semicoherent twist {2�1�10}
Prismatic||Prismatic (TPP) steps24,33.

Despite these atomic level studies showing semicoherent BP/
PB and TPP boundaries in BS and DS views, respectively, some
important questions remain unanswered. First, whether the
kinematics of twin growth are comparable for BS and DS sections.
Second, the effect of the different types of TDs and semicoherent
facets on the mobility of a twin remains a mystery. These issues
can be addressed by characterizing the twin shape in the TPN
view (along k1), because this view provides the dimensions of a
twin in the forward and lateral directions (Fig. 1e). In this study
we characterized multiple {01�12} twin shapes along η1, k1, and λ
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Fig. 1 The three-dimensional view of twinning associated boundaries. a Coordinates for hexagonal closed packed (HCP) structure and the pole figure
of (0�112) twinning plane. b Three-dimensional twin schematic with reported twin facets defining twin boundaries (TBs). c ‘Bright side’ (BS) view of the twin
along λ= k1 × η1 showing normal-TB and forward-TB. d ‘Dark side’ (DS) view of the twin along η1 showing normal-TB and lateral-TB. e Twin plane normal
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view. The possible serrations may be (�46�27) and ð42�67Þ based on the pole figure and stereogram analysis in Fig. 1a, Supplementary Fig. 1, and
Supplementary Fig. 2
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directions using sections perpendicular to those directions. The
statistical electron back-scatter diffraction (EBSD) results show
that twins exhibit a lenticular shape in DS and BS views, but an
irregular shape in TPN view. Experimental results also show that
twins grow faster in the direction λ (associated with migration of
lateral TBs) than in the direction η1 (associated with migration of
forward TBs) at the initial stages of twin growth, before inter-
section with GBs that arrest the forward and lateral propagation.

Results
Twin shapes in the BS, DS, and TPN view. Figure 1a, Supple-
mentary Fig. 1, and Supplementary Note 1 show the (01�12)
twinning plane pole figure and stereogram when observing in the
TPN view. This analysis is critical to identify twin relations
(Supplementary Fig. 2) or possible low-index crystallographic
facets (such as (42�67) and (�46�27) in Fig. 1e). As shown in Fig. 2,
EBSD results reveal lenticular shapes in both the BS view
(Fig. 2a–d) and the DS view (Fig. 2e–h), but an irregular shape in
the TPN view (Fig. 2i–l). The intersecting traces of particular
crystallographic planes or directions (such as traces along λ, η1,
and k1) can be identified by pole figure analysis (Supplementary
Fig. 3 illustrates the details of this analysis method). Therefore, as
shown in Fig. 2 (more detailed information in Supplementary
Fig. 4 and Supplementary Fig. 5), we find that twin shapes in the
BS view are much narrower along k1 than along η1, and twin
shapes in the DS view are much narrower along k1 than along λ.
By comparison, the twin in the TPN view has an irregular shape

and no obvious correlation between λ and η1. This irregular shape
is likely due to the different types of facets and TDs that affect the
mobility of TBs. Based on this qualitative evidence, we performed
a significant amount of EBSD experiments to explore the char-
acteristics of twin propagation and growth along the λ, η1, and k1
orthogonal directions.

Selection criteria and statistics of qualified twins. The criteria to
select the qualified twins are the following. First, the deviation
between the viewing axis λ, η1, or k1 of each twin has to be less
than 5°. Second, if there exists a deviation, the measured lengths
are adjusted using the pole figures of each twin as shown in Fig. 3.
Third, only twins with none or minimum overlap with GBs are
considered. The rationale is that when a large portion of the TB is
shared with a GB, the twin shape is greatly determined by grain
morphology. Therefore, grain sizes are normally greater than the
twin sizes reported here. Figure 4 presents the statistical results of
twin aspect ratios for the BS, DS, and TPN view. We classified
twins in three types based on their junctions at GBs as they
appear in the EBSD sections. They are Type 0 if neither side of
the twin is connected to a GB, Type 1 if only one side is con-
nected to a GB and Type 2 if both sides are connected to GBs.
Based on these criteria, 276 twins are analyzed. As shown in
Fig. 4a, the number of qualified BS twins is relevant for the three
types, with prevalence of type 2. Twins in the DS view are
overwhelmingly type 2, but practically zero number of type 0. In
what concerns twins in the TPN view, they are type 1 and type 2
in about equal numbers, indicating that propagation always starts
at a GB. This evidence suggests that the lateral expansion of
twins is relatively easy, since most of the DS view (λ− k1) extend
from side to side of the grain (type 2), compared to the BS view
(η1− k1).

Irregular twin shapes in the TPN view. Statistical results of the
maximum lengths measured in the BS view sections (η1− k1, in
pink) and DS view sections (λ− k1, in blue) and TPN view sec-
tions (λ− η1, in red), plus their ratio (k1η1,

k1
λ and λ

η1
) are illustrated

in Fig. 4b–d. These results confirm the lenticular twin shape in
the BS and DS views and the irregular twin shape in the TPN
view. In all cases, statistical results show that whatever the
maximum length along λ and η1 is, the maximum length along k1
is much smaller. It emphasizes that lateral and forward propa-
gation are faster than the growth normal to the k1 plane, which
results in lenticular shapes for both BS and DS view twin sections.
In contrast, the statistical correlation between the maximum
lengths along λ and η1 manifests the irregular twin shapes asso-
ciated with the TPN view in general.

Faster lateral propagation after a twin nucleates. As shown
in Fig. 2i–l, neither λ nor η1 is along the long or the short axis of
the twin section in the TPN view, and the expansion along λ or
along η1 is not confined by a GB in most cases. The statistical
distribution of the λ

η1
ratio of each twin shown in Fig. 4d suggests

that, after a twin nucleates, it tends to propagate faster laterally
along λ than along the shear direction η1. Such behavior holds up
to λ ~40 µm, above which the length η1 appears to be system-
atically larger than λ. However, the scarcity and dispersion of the
results can not guarantee a firm conclusion, and we speculate that
at this point the propagation of the twin expanding is affected by
grain boundaries or by other twins. This finding not only
underlines the importance of the lateral expansion (DS view) on
three-dimensional twin growth, but also poses an important
question: the motion mechanisms that the lateral facets in the DS
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Fig. 2 Twin shapes in the BS (lenticular), DS (lenticular), and TPN view
(irregular). a–d Typical twin sections in the BS view with short axis along k1
and long axis along η1. a Scale bar, 45 μm. b Scale bar, 40 μm. c Scale bar,
75 μm. d Scale bar, 50 μm. e–h Typical twin sections in the DS view with
short axis along k1 and long axis along λ. e Scale bar, 45 μm. f Scale bar,
40 μm. g Scale bar, 50 μm. h Scale bar, 70 μm. i–l Typical twin sections
in the TPN view showing the position of the η1 and λ axes. i Scale bar,
50 μm. j Scale bar, 85 μm. k Scale bar, 90 μm. l Scale bar, 60 μm. The highly
irregular shape suggesting low-surface tension, and mostly lateral
propagation of the twin in case (l). The detailed analysis to determine
length of axis, twin relation and crystallographic directions can be found in
Fig. 3, Supplementary Fig. 3, and Supplementary Fig. 5. The longest length
of each axis in each section was used for the statistical information
reported in Fig. 4
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view (mostly TPP boundaries) grow faster than BP/PB serrated
boundaries in the BS view remain unknown.

Discussion
The mobility of forward and lateral TBs is strongly dependent on
the character of TDs and the pinning effect associated with steps/
facets along the forward and lateral TBs. When a TD loop
nucleates on the normal-TB, the twin thickens by two 0�112f g
atomic layers. The migration of forward and lateral TBs is
accomplished via glide of TD loops34 along η1 and λ directions.
The segment of a TD loop parallel to λ is perpendicular to the
Burgers vector and has pure edge character. The segment of a TD
loop parallel to η1 is parallel to the Burgers vector and has pure
screw character. For a general dislocation with planar core, a
screw dislocation has higher mobility than an edge
dislocation24,35. This can partly account for the observed aspect
ratios of twins reported in Fig. 4. We further confirmed this by
calculating the kinetic barriers of a straight edge or screw TD
using molecular statics (MS) simulations.

The kinetic barriers are calculated by the nudge elastic band
method36 in which the initial and final configurations of a single
step are schematically shown in Fig. 5a (construction and simu-
lation details are described in “Methods” section). With 19

intermediate states, the kinetic barriers associated with the glide
of edge and screw TDs are calculated and plotted. We find that
the barrier for the glide of edge TD is around 0.012 eV/nm, which
is six times that of screw TD shown in Fig. 5b. This indicates a
higher mobility for screw TDs than for edge TDs, and so a faster
lateral migration of twins, compared to the forward migration. In
addition, recent 3D atomic simulations of twin growth25 also
show that the twin nucleus grows faster on the lateral side than on
the forward side when shear is applied (see Supplementary Fig. 6).

The mobility of TDs, however, is not the only mechanism to
account for the difference in TB migration, because steps/facets
are often formed during propagation and growth of twins. At
early stages of twinning, it is clear that lateral and forward TBs are
in a state of nonequilibrium associated with the pileup of TDs.
The questions to be posed next are whether large coherent or
semicoherent facets form, as twins become larger; and whether
those facets can move and lead to twin propagation. Molecular
dynamics (MD) simulations show that edge TDs pile up and form
BP/PB steps/facets in the BS view, and screw TDs pile up and
form T-PP1 (semicoherent f�1101gjjf10�11g interface with 5.68°
twist angle) or/and T-PP2 (semicoherent f�2110gjjf2�1�10g inter-
face with 7.42° twist angle) facets34. When twinning is accom-
plished by the migration of large facets, shuffling is
simultaneously involved. Since shuffling is a diffusion process,
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more shuffling leads to a higher energy barrier, which would
reduce the mobility of large steps/facets compared to the one of
individual TDs. As a consequence, although in a relaxed
unstressed state large facets may be energetically favorable, our
previous work reveals that propagation requires a break-up of
coherency and the formation of local edge and screw TDs pile-
ups on the forward and lateral sides. Here, we constructed dif-
ferent facets and examined the stability of these large coherent
facets using MD simulations. Red dash lines in Fig. 5c show the
initial shape of twin tips. (Construction and simulation details are
described in “Methods” section). In Fig. 5c, d, with 100 ps
relaxation at 1 k, BP/PB facets in the BS view are stable. Mean-
while, T-PP1 and T-PP2 facets in the DS view (Fig. 5e, f)
degenerate into multiple separated 2-layer steps. Thus, the twin
should grow faster in the DS view due to higher mobility of TDs
than in the BS view associated with formation of large PB/BP
facets. Formation of misfit dislocation will slow down twin pro-
pagation in both forward and lateral directions (details can be
found in Supplementary Note 2 and Supplementary Fig. 7).
However, quantitative estimation of the propagation that is
retarded is not clear and will be the subject of future work.

In summary, by applying EBSD statistical analysis to 276
representative deformation twins in magnesium, we found that a
lenticular twin shape when viewed along the twinning shear
direction (the DS view, long axis along λ and short axis along k1),
same as the classic shape associated with the lateral viewing (the
BS view, η1 is the long axis and k1 is the short axis). This reveals
that forward and lateral propagation of twins is easier than the
normal growth perpendicular to the f10�12g CTB. The twin
section has an irregular shape when observed along the k1
direction (TPN view), and λ tends to be longer than η1, at least
until grain boundaries or other twins start interfering with pro-
pagation (λ < 40 µm). The latter evidence, combined with the fact
that DS sections tend to fully span the grain (type 2 in Fig. 4a),
implies that lateral expansion is faster than forward propagation.
Also, the irregular morphology suggests small or null surface
tension associated with twin interfaces. We attribute the aniso-
tropic propagation to the different mobility of the edge and screw
components of TDs. These findings improve the current under-
standing of deformation twin morphology and propagation in
HCP metals. In addition, these findings lead us to speculate that,
because both forward and lateral twin motion is required for twin
growth, their relative mobility may provide an explanation to why
different twin modes can (or cannot) be activated in different
HCP materials. However, the effect of misfit dislocation on twin
propagation in both, forward and lateral directions, suggests the
need for a full 3D characterization of individual twins combining
serial sectioning and 3D molecular dynamics.

Methods
Experimental characterization. A commercial pure, fully recrystallized Mg plate
with a strong basal texture component perpendicular to the rolling plane was
compressed along the rolling direction (RD) to a total strain of 1% to activate co-
zonal {01�12} twins37. The electro-polished samples were cut using two different
sections: the most commonly used one, containing the RD and the normal
direction (ND), to reveal the BS view of twins, and an atypical one, at 45° to the RD
and the ND, to maximize the number of twins from TPN view and DS view.
Samples were electropolished in a solution of 2% nitric acid and water at a voltage
of less than 1 V. An FEI XL30 with an accelerating voltage of 25 kV was used for
EBSD to obtain crystal orientation for both parent and twin phases. Total exam-
ined area is 8 mm long and 4 mm wide.

Atomistic simulations. MS/MD simulations were conducted for Mg with the
empirical interatomic potential developed by Liu et al.38.

Under the convention that x-axis is along ½10�11� direction, y-axis is normal to
�1012ð Þ plane and z-axis is along ½1�210� direction, construction of the model
containing an edge TD starts with a 40 × 40 × 1.60 nm bicrystal with �1012ð Þ
twinning orientation. After introducing a pure edge TD with Burgers vector bet ¼
ð0:049; 0; 0Þ nm by applying the anisotropic Barnett–Lothe solutions39 followed by

shuffle operation34, a two-layer step with pure edge TD is constructed. Enforcing
fixed boundaries in x- and y-direction and periodic boundary condition in z-
direction, dynamic quenching is conducted with the EAM potential developed by
Liu et al.38 until the maximum force is less than 5 pN. Similarly, a 40 × 40 ×
1.52 nm �1012ð Þ twinning-oriented bicrystal model containing a pure screw TD is
constructed with coordinate x-axis along �12�10½ � direction, y-axis normal to �1012ð Þ
plane and z-axis along 10�11½ � direction. Next, a pure screw TD with Burgers vector
bst ¼ ð0; 0; 0:049Þ nm and shuffle operations are incorporated to the model. The
configurations for screw disconnection are relaxed under the same boundary
condition and equilibrium criterion as the case of edge disconnection.

The construction of models containing BP/PB and k2 facets starts with an 80 ×
80 × 1.60 nm single crystal in the coordinate that x-axis is along ½10�11� direction, y-
axis is normal to �1012ð Þ plane, and z-axis is along ½1�210� direction. By introducing
64 edge TDs with Burgers vector bet ¼ ð0:049; 0; 0Þ nm39 onto BP/PB or K2 planes
and associated shuffle vectors34, twin tips containing BP/PB or k2 facets are
constructed. Similarly, the construction of models containing T-PP1 and T-PP2
facets starts with an 80 × 80 × 1.52 nm single crystal which adopts the coordinate that
x-axis is along �12�10½ � direction, y-axis is normal to �1012ð Þ plane, and z-axis is along
10�11½ � direction. Totally, 64 screw TDs with Burgers vector bst ¼ ð0; 0; 0:049Þ nm are
introduced into T-PP1 or T-PP2 facets followed by corresponding shuffle operations.
With fixed boundary conditions in x- and y-direction and periodic boundary
condition in z-direction, the models are relaxed at 1 k for 100 ps.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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