22 research outputs found

    A joint physics and radiobiology DREAM team vision - Towards better response prediction models to advance radiotherapy.

    Get PDF
    Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines

    The π0e+e\pi^0\to e^+e^- and ημ+μ\eta\to \mu^+ \mu^- Decays Revisited

    Full text link
    The rare π0e+e\pi^0 \to e^+e^- and ημ+μ\eta \to \mu^+\mu^- decays are calculated in different schemes, which are seen to be essentially equivalent to and produce the same results as conventional Vector-Meson Dominance. We obtain the theoretical predictions B(π0e+e)=(6.41±0.19)×108B(\pi^0 \to e^+e^-) = (6.41 \pm 0.19)\times 10^{-8} and B(ημ+μ)=(1.14+0.060.03)×105B(\eta \to \mu^+\mu^-) = (1.14 +0.06 -0.03) \times 10^{-5} in agreement with recent experimental data.Comment: 10 pages, LATEX (revised version for recent experimental data

    A joint physics and radiobiology DREAM team vision - towards better response prediction models to advance radiotherapy

    Get PDF
    Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+ee^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions

    Get PDF
    A better understanding of seismic wave attenuation in hydrate-bearing sediments is needed for the improved geophysical quantification of seafloor methane hydrates, important for climate change, geohazard and economic resource assessment. Hence, we conducted a series of small strain (<10−6), seismic frequency (50–550 Hz), laboratory resonant column experiments on synthetic methane hydrate-bearing sands under excess-water seafloor conditions. The results show a complex dependence of P- and S-wave attenuation on hydrate saturation and morphology. P- and S-wave attenuation in excess-water hydrate-bearing sand is much higher than in excess-gas hydrate-bearing sand and increases with hydrate saturation between 0 and 0.44 (the experimental range). Theoretical modelling suggests that load-bearing hydrate is an important cause of heightened attenuation for both P- and S-waves in gas and water saturated sands, while pore-filling hydrate also contributes significantly to P-wave attenuation in water saturated sands. A squirt flow attenuation mechanism, related to microporous hydrate and low aspect ratio pores at the interface between sand grains and hydrate, is thought to be responsible for the heightened levels of attenuation in hydrate-bearing sands at low hydrate saturations (<0.44)

    Facial dermatosis associated with Demodex: a case-control study*

    No full text
    Demodex has been considered to be related with multiple skin disorders, but controversy persists. In this case-control study, a survey was conducted with 860 dermatosis patients aged 12 to 84 years in Xi’an, China to identify the association between facial dermatosis and Demodex. Amongst the patients, 539 suffered from facial dermatosis and 321 suffered from non-facial dermatosis. Demodex mites were sampled and examined using the skin pressurization method. Multivariate regression analysis was applied to analyze the association between facial dermatosis and Demodex infestation, and to identify the risk factors of Demodex infestation. The results showed that total detection rate of Demodex was 43.0%. Patients aged above 30 years had higher odds of Demodex infestation than those under 30 years. Compared to patients with neutral skin, patients with mixed, oily, or dry skin were more likely to be infested with Demodex (odds ratios (ORs) were 2.5, 2.4, and 1.6, respectively). Moreover, Demodex infestation was found to be statistically associated with rosacea (OR=8.1), steroid-induced dermatitis (OR=2.7), seborrheic dermatitis (OR=2.2), and primary irritation dermatitis (OR=2.1). In particular, ORs calculated from the severe infestation (≥5 mites/cm2) rate were significantly higher than those of the total rate. Therefore, we concluded that Demodex is associated with rosacea, steroid-induced dermatitis, seborrheic dermatitis, and primary irritation dermatitis. The rate of severe infestation is found to be more correlated with various dermatosis than the total infestation rate. The risk factors of Demodex infestation, age, and skin types were identified. Our study also suggested that good hygiene practice might reduce the chances of demodicosis and Demodex infestation

    Physics with the KLOE-2 experiment at the upgraded DAFNE

    Get PDF
    Investigation at a φ-factory can shed light on several debated issues in particle physics. We discuss: (i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, (ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled-kaon states, (iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and η/ η' mesons, (iv) the contribution to understand the nature of light scalar mesons, and (v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e + e - physics in the continuum with the measurements of (multi)hadronic cross sections and the study of γ γ processes
    corecore