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A B S T R A C T   

Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. 
Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to 
date. Remarkable advances in technology, computing, and experimental biology now create opportunities to 
incorporate this knowledge into enhanced computational models. 
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Data science 
AI The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts 

across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced 
modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately 
achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based 
levels. This requires the generation of models that inform response-based adaptations, individually optimized 
delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to 
models that can drive the realization of personalized therapy for optimal outcomes. 

This position paper provides their propositions that describe how innovations in biology, physics, mathe
matics, and data science including AI could inform models and improve predictions. It consolidates the DREAM 
team’s consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for 
rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. 
Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physi
cians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by 
a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed 
models can be created. Future research environment and support must facilitate this integrative method of 
operation across multiple disciplines.   

Preamble 

RT is one of the cornerstones of cancer treatment. However, it comes 
with inevitable radiation dose to normal tissues. Achieving best possible 
treatment outcome for individual patients through informed selection of 
modalities and their careful application requires a quantitative 
description of their contribution to tumour control and side-effects with 
the help of models (see Table 1). 

RT responses of normal tissues and disease result from tissue- and 
tumour-specific response mechanisms that are affected by many treat
ment, patient- and disease-related factors (Fig. 1). This makes the 
identification of relevant response patterns in data from modern treat
ments challenging. Conversely, using such data to increase the under
standing of mechanisms and responses is equally challenging as the 
interactions are often missed in the search for parsimonious mathe
matical formalisms. 

Overcoming these challenges requires a collaborative, cross- 
disciplinary effort to inform such formalisms with biological experi
mental models. Therefore, medical physicists, radiobiologists, and 
computational scientists congregated at the DREAM (Dose Response, 

Experiment, Analysis, Modelling) workshop conducted at the 2022 
ESTRO physics meeting in Lisbon, Portugal, to discuss their perspectives 
and challenges in model development. Aiming to bridge gaps between 
disciplines and to render accurate radiotherapy (RT) response prediction 
a “dream come true”, a shared mission, and joint strategies and positions 
were formulated. 

This paper aims to provide the vision and related positions derived 
from this ESTRO DREAM workshop. Here we stress the need for rigorous 
and multifaceted model development, comprehensive validation, and 
the need for clinical applicability and significance. We argue that the 
generation of robust and clinically meaningful models in radiation 
oncology requires the concerted action of all stakeholders with a shared 
mission to improve such models through incorporating a variety of 
methodologies and technologies in an integrated way. 

The DREAM vision 

The vision of the DREAM team is “optimal RT treatment outcome by 
quantitative models that support risk prediction and provide actionable 
input to clinical patient management”. The mission is thus to leverage 
the full breadth of radiation oncology models (Table 1). This would lead 
to improved prediction based on a more comprehensive understanding 
than provided by each of the individual models. The process would 
include enhanced statistical, mathematical, and computational tools in 
combination with the implementation of radiobiological concepts sup
ported by bidirectional translation between clinic and laboratory. Such 
models should be complex enough to allow individualised comparative 
assessment of multiple treatment strategies involving both RT treatment 
modalities and techniques as well as drug-radiation combinations. 

Radiation response prediction models to date and unmet needs 

Clinical risk prediction models are at the core of recommended dose 
constraints in RT practice guidelines, treatment schedule design, and 
individual patient treatment optimization [1,2]. Yet, there is an unmet 
need for more clinically useful models that provide actionable predictors 
of toxicity or disease control [3]. The organ-by-organ approach ad 
modum QUANTEC may be reaching its limit. [4,5]. Post-QUANTEC 
normal tissue complication probability (NTCP) models have improved, 
in part due to increasing study sizes. An ever-increasing study size, on its 
own, however, will fail at clinical utility if the studied effects are not 
actionable or capture a sufficient proportion of the cause-effect rela
tionship for clinical outcome. Irrespective of data quantity, more com
plex predictors of radiation responses require a better integration of 
radiation oncology models (Table 1). 

Data-driven models that define tumour target volumes and doses are 
important for treatment outcomes but do not satisfactorily meet the 
needs of modern RT. While potential benefit of sub-volume boosting has 

Table 1 
Model types in radiation oncology Central to our DREAM propositions are 
models. However, the term “models” has different meanings for the different 
disciplines involved. In general, a model is a simplification of reality, which all 
disciplines use to improve insight into a process that is studied. A first major 
distinction can be made between ‘experimental models’, model systems that 
allow the experimental interrogation of processes, and ‘mathematical and 
computational models’ that offer a quantitative description and simulation of 
these processes. In our fields, the various types of models are defined as depicted 
in the table.  

Type Features Examples 

Models in 
experimental 
biology 

Biological systems that aim 
to recapitulate specific 
biological entities and 
processes 

Cellular 2D and 3D in vitro 
models, animal models ( 
Fig. 1B) 

Epidemiological 
models 

Descriptive, extensive 
statistical framework for 
development and validation 

Multivariable (logistic) 
regression analyses 

Biophysical models Descriptive, but formulation 
inspired by mechanistic 
hypotheses 

Functional subunits (FSU)- 
based models, Lyman- 
Kutcher-Burman model, 
linear quadratic model 

Computational 
models 

Detailed simulation of 
mechanisms / processes, 
leading to predicted 
outcome measures 

Monte Carlo simulations, 
multi-scale models 

AI and ML Highly flexible, can handle 
large numbers of variables, 
unbiased approaches 

Neural networks or 
classifiers for predicting 
toxicity, and/or tumour 
response prediction  
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proven effective in some settings [6], individualized risk prediction for 
patient selection or dose prescription has not reached clinical practice, 
despite the potential being described by Ling et al more than two de
cades ago [7]. The difficulties in model development are further exac
erbated by interactions with other treatment modalities such as adjuvant 
immunotherapy [8,9]. 

To address these issues, there is an eminent need for a unified effort 
of radiobiology, physics, data science, and clinical oncology to move 
thoroughly beyond the current state of science. 

Constraints and challenges in model development 

Multiple constraints, such as the complexity of biological systems, 
poor data, and limited outcome assessments, obstruct the development 
of accurate and clinically useful models for individualized risk predic
tion or treatment innovations. 

The complexity of biological systems and their responses to external 
factors pose the greatest challenge in accurately determining and pre
dicting the impact of their components on radiation responses [10,11]. 
Measurable responses are effectively a summation of effects of countless 
and often unknown biological factors that together constitute a network 
of interdependent variables. The response of each individual cell, tissue, 
tumour, or patient is dictated by an epigenetically, genetically, and 
importantly, also (micro-)environmentally defined unique combination 
of these parameters, that contributes to the inherently heterogeneous 
distribution of dynamic radiotherapy responses across individual pa
tients, tissues, and tumours (Fig. 1). 

The large number of these potential biological variables restricts an 
individual assessment of their quantitative relationships for description 
in mathematical terms. Therefore, while the absorbed radiation dose 
may be a reliable and standardizable constant across different systems, 
the important quantitative association with biological response end
points is often complicated. Such associations are to be carefully eval
uated in a context specific and clinically relevant manner. Yet, an 
increasing number of important biological markers of radiation response 
are being discovered and validated that demands appropriate integra
tion into current mathematical models (Table 1) and in suitable math
ematical terms. 

Clinical data are limited in size, highly heterogeneous, and often 
deprived of detailed data on important clinical and biological factors. 

This hampers model development and ultimately limits their perfor
mance. The diversity of RT protocols, combined with insufficient or 
discordant reporting of treatment details, outcomes, or follow-up, can 
further limit the use of larger aggregated data sets [12,13], contribute to 
noisy data sets and weaken model performance. Similarly, in
consistencies in the generation of experimental data also add to data 
heterogeneity in the preclinical setting. 

In addition to posing constrains in model development, limited and 
heterogeneous data also complicate statistical valuations [14]. A limit to 
the number of similarly treated patients, in addition to the inter- and 
intra-patient response heterogeneity, poses strong numerical constraints 
for adequate multivariate analysis and opportunities for independent 
validations. Concurrently, data analysis strategies that aim to test indi
vidual hypotheses may use mathematical or computational models that 
inherently ignore parameters that were not originally defined but could 
be of potential significance to their performance. Artificial intelligence 
(AI) and Machine learning (ML) algorithms can offer a solution to some 
of these challenges and transform data analysis but remain confronted 
with the problem of insufficient population sizes that require external 
validation and appropriate methods against overfitting [15,16]. 

Model demands for better radiation response predictions 

Current mathematical models that calculate probabilities of tumour 
responses and normal tissue complications are particularly limited in 
their ability to 1) accurately adjust risks for individual patients ac
cording to clinical and biological factors and 2) properly predict bio
logical dose modifications such as caused by combinations with novel 
molecular agents or innovative radiation treatment modalities. 

Better models by better model generation strategies 

The clinical purpose of a model must be considered as an integral 
part of the model generation, model building and performance assess
ment strategy. This should happen at the design stage, prior to tasking a 
researcher with data collection or analysis. The words of Douglas Alt
man, We need less research, better research, and research done for the right 
reasons, are still relevant 30 years after the first publication [17]. To 
enhance the clinical utility of models, a clearly formulated potential 
addition to our clinical service as a long-term goal of a modeling strategy 

Fig. 1. Clinical outcomes are a product of heterogenous and complex biological systems. The high complexity and heterogeneity of biological systems poses 
challenges in generating treatment outcome prediction models for radiotherapy optimization. Multiple interacting features and states determine the biological effect, 
giving rise to heterogeneous responses to identical treatments. The variation in outcomes observed between patients (population heterogeneity) results in part from 
differences in biological (eg. genetic background, age, sex), clinical (eg. comorbidities), and socioeconomic and lifestyle factors (eg. access to healthcare, smoking 
status). Many additional and patient-specific factors contribute to this heterogeneity. These factors include normal tissue derived, as defined by tumour location, or 
tumor tissue associated such as microenvironmental (eg. perfusion/oxygenation, immune infiltration, presence of stromal cells) and tumour cell state related that are 
defined by innumerable molecular and genetic elements and interactions (eg. Mutational profile, differentiation and metabolic status). Together they amount to a 
unique constellation of response determining features in each individual patient. The probability for different treatment outcome parameters, such as cure or injury 
from treatment, depends on the combined effect of all these different features and is the root of the highly heterogeneous response to therapy within and be
tween patients. 
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should be a requirement. 
Modeling strategies can be based on clinical data, may involve 

translations between lab and clinic or follow a testable hypothesis. 
Model generation strategies should involve independent verifications 
and model validation steps. There should be a conscious assessment of 
the avenue forward and destination. Key elements to be considered in 
model development are dimensionality levels, model quality metrics 
and validation strategies. Suboptimal performance linked to low 
dimensionality and overfitting issues associated with high dimension
ality require the use of appropriate model quality metrics and can be 
further optimized with input from experimental models [16]. Recent 
radiation toxicity prediction studies (QUANTEC and preclinical lung 
models) exemplify the advances provided by such strategies in model 
development [18–20]. In the context of Artificial Intelligence (AI) and 
Machine Learning (ML), methods to ensure transparency and explain
ability of the models (known as xAI) should also be considered as critical 
part of the model generation process [21,22]. 

Clinical outcome models should capture the complexity of the un
derlying biology, but only to the level where it has a demonstrable 
impact on outcome. This contrasts with models offering a more 
comprehensive or detailed description of biology that are more useful 
for experimental testing, e.g., of mechanistic hypotheses, and that may 
be informative for subsequent clinical evaluations. Generalizability for 
any specific clinical scenario is vital. The appropriate reporting of model 
development design and mathematical algorithms is therefore critical to 
enable independent validation by other researchers to substantiate its 
use in the respective specific clinical scenario. 

Prospects using AI 

One of the benefits of AI, and more specifically its algorithmic ML 
subfield, is its potential to handle large and complex multivariable 
datasets. AI/ML algorithms are currently transforming the field of ra
diation oncology with applications spanning its workflow from patient 
selection and prescription, auto-contouring, treatment planning, to 
quality assurance prescription from outcome prediction to treatment 
adaptation [23,24]. The multitude of AI/ML algorithms and training ML 
methods, such as deep convolutional neural networks (CNNs) facilitate 
their application for the development of classifiers for improved 
outcome prediction or the extraction of critical variables and parameters 
for inclusion in personalized prediction models and treatment planning. 
For this purpose, larger and more diverse and representative data pop
ulations are required, despite the growing opportunities to overcome the 
performance-limiting effects of small sample sizes on ML models. 
Federated (distributed) learning is encouraged as a data sharing pro
cedure to increase data quantity [25,26]. In a knowledge-based 
approach, translational efforts can guide the optimal selection of pre
dictors, either retrospectively or prospectively, based on previously 
accepted radiobiological and technical knowledge. Given its success and 
in addition to the anticipated potential of AI in radiation oncolo
gy outcome modelling, preclinical radiobiology studies can also strongly 
benefit from AI/ML applications or increase their clinical relevance. 

Reversely, preclinical radiobiology studies offer ample opportunities 
to test hypotheses on putative causal relationships inferred from clinical 
data by AI thus addressing some of its current limitations and challenges 
in advancing radiation oncology [27–29]. Radiobiological studies and 
models are also well-suited to investigate the potential mechanisms 
underlying patterns and relationships revealed by AI-supported data 
analyses. 

Better models by a better understanding of mechanisms and biology 

Data from preclinical studies help generate mechanistic hypotheses 
for the generation of clinically applicable models. They may also inform 
models regarding extrapolations or adaptations, for example to address 
uncertainties in biological effectiveness introduced by technological and 

pharmaceutical changes to treatment for effect estimates in the clinic 
[30,31]. 

Experimental models are crucial to determine dose response patterns 
and to understand the biological mechanisms underlying radiation re
sponses [32]. They allow an in-depth assessment of individual biological 
processes and concepts in an isolated manner. A multitude of different 
preclinical experimental models with varying complexity (Fig. 2) are 
available to date and support the validation of mechanistic concepts 
derived from these studies or discovered in clinical data studies. Ulti
mately tested in the clinical setting, such mechanistic insights can 
strengthen clinical response predictions and models. A continued effort 
to optimize these experimental models for this purpose will improve 
clinical response prediction models [18,33,34]. As the values are not 
generally transferable to the clinic, radiosensitivity parameters from 
preclinical experiments or deduced from patient specimen-based anal
ysis are to be optimized for this purpose. While the experimentally 
established dose–response mechanisms may translate into the clinical 
setting, the clinical model parameter values are likely different from the 
experimental ones. Qualitative relationships are however transferable, 
yet demand better and widely applicable parameterization methods, 
their development achievable by the concerted interdisciplinary efforts 
proposed here. 

Improved understanding of biology can also help with uncertainties 
that play an important role when translating findings to and across 
different clinical settings or when attempting to predict responses by 
extrapolation from mathematically described response relationships. 
Different parameterization methods can be helpful in this process. Ex
trapolations based on mathematical models however show a high 
parameter sensitivity that contributes to uncertainties; uncertainties 
that could be reduced by mechanistic assumptions [35,36]. Neverthe
less, these extrapolations, when supported by appropriate mathematical 
models, can be tested in the clinic and in a preclinical setting. ML/AI 
assisted data mining studies could have an important role in hypothesis 
generation, by identifying variables that are to be investigated in sub
sequent systematic experiments [37]. Reversely, clinical investigations 
and/or biological experiments could improve feature selection also for 
ML/AI algorithms by identifying or prioritizing which data should be 
collected and which features should be investigated [38,39]. 

Next to mechanistic insights, preclinical experimental model studies 
also provide an important opportunity to assess the impact of novel 
experimental treatments. To advance radiotherapy, an important 
mission of many translational radiobiology studies is to investigate 
novel technologies, modalities, or agents that reduce damage to normal 
tissues or increase irradiation effects solely in tumours. Within the 
realms of the workshop objectives, this stresses the need for mathe
matical or computational models that allow a better comparison of 
experimentally determined radiation response relationships across 
different experimental models and studies with the aim to inform clin
ical trial setting and designs or for better risk assessments. 

Experimental models can be used in studies that aim to improve the 
clinical utility of prediction models [1,40,41]. While individual values, 
needed to estimate risks in the clinic, cannot be produced or validated in 
the preclinical setting, radiobiological concepts can be validated. The 
choice of the experimental model should however be carefully made, 
providing both a sufficiently high specificity but also sensitivity to test 
the hypothesis generated from the clinical data. Validation may be 
obstructed by clinic-specific circumstances or methodologies that could 
conceal important confounders relevant to the hypotheses (smoking or 
diabetes are some examples). It is therefore beneficial to make sure to 
integrate the respective discipline’s expertise prior to study design to 
optimize the legitimacy of such tests as noted earlier. 

Better models by better data and metrics 

Increasing data size and quality is paramount to optimal model 
development [27,42] and this demands that also GDPR related 
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limitations and real-world data collection challenges are addressed. 
Improved data collection tools and methods, refined patient related 
outcome measures and clinician reported measures can contribute to 
increased data quality, and ultimately clinical utility of such models. 

Important to data acquisition and analysis is the appropriate 
reporting following standards that will need to be defined by interdis
ciplinary working group efforts. A more conscious effort is required to 
farm data with common endpoint definitions and accepted reporting 
variables that are crucial to improved data utility [12,27,43]. 

Conversions of the absorbed dose to tissue and treatment-specific 
related quantities are necessary approaches to estimate dose-limiting 
normal tissue complication probability for treatment plans in clinical 
practice [44,45]. These conversion methods are to be considered in 
preclinical experiments and can be questioned in accordingly designed 
preclinical experiments using different experimental models to account 
for different levels of complexity (Fig. 1). However, despite having clear 
utility, translation of such biological effective doses between these sys
tems are non-trivial. Dose response relationships projected from dispa
rate research subjects and differing endpoint measures restrict 

translation across different systems [11,46,47]. The result is that exist
ing radiation response measures are unlikely to possess sufficient sub
tlety to capture individualized response and allow biological dose 
modification. Thus, better measures and computational models will 
have to be established that enable an aggregation of such values from 
different experimental results to increase compatibility across clinic and 
preclinical studies. 

Better models with improved clinical utility 

Current practice using single dose–response constraints in treatment 
planning can be improved by the consideration of risk factors such as the 
clinical factors, patient performance, risk factors of recurrence, and 
lifestyle. Many options exist for individualized treatment improvement 
by providing clinical decision-support systems according to the DREAM 
vision. Success is, however, contingent on the utility of the models in the 
clinical context. 

In this context it will be also important to embrace collaborations 
with industrial partners. Such collaborations are essential to facilitate 

Fig. 2. Experimental model complexity Representation of experimental models (Table 1) that are routinely utilised in preclinical radiation biology research and the 
key characteristics they encompass. The role of certain individual key features (Fig. 1) in radiation response can be interrogated using different experimental models 
according to the characteristics of the human cancer or healthy tissue constitution that they aim to emulate. Multiple experimental models are being used to un
derstand and evaluate changes in radiation responses, from the most basic using single cells to the most compounded, such as immunodeficient, immunocompetent 
mammalian models. As depicted in the pyramid, in a progressive comprehension of both normal tissue and cancer response, the ascending complexity of these 
experimental models results from the increasing number of relevant molecular and biological elements they are composed of (as depicted by symbols). The more 
complex models provide an opportunity to investigate characteristics absent in the others (such as the role of an intact immune system) and to analyse a potential 
interplay between the interrogated features. On the other hand, some molecular and cellular mechanisms are most accurately assessed in less complex in vitro models 
that provide a tractable context. 
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data collection and comparisons across facilities. They also enable the 
generations of models that are in line with novel radiotherapy tech
nology plans by these industrial partners. 

Experimental models and statistical outcome modelling from clinical 
data are complementary tools that should be considered in conjunction. 
The clinical utility of a given model or study should however be 
considered at all stages of the model development, including the trans
lation between laboratory and clinic. In some cases, such as when 
investigating a mechanistic coupling of organs at risk for cardiotoxicity 
[18], the experimental models provide critically important insights and 
lend credibility to the results. The analysis of clinical data, such as the 
assessment of model performance over a time-varying case-mix in 
clinical practice, can be an appropriate alternative tool [48]. 

In addition to clinical credibility, it is necessary to provide quanti
tative estimates of model performance – relevant for the individual 
clinical use case – on datasets which are independent in time and place. 
This also implies a need to publish the models and provide adequate 
descriptions of the studies’ metrics [49]. The external validation of 
models is important and should be prioritized by using appropriate 
performance metrics assessed in the external dataset [50]. 

Neither of these aspects are prohibitive towards high dimensionality 
or AI models despite the increased complexity. Modern high dimen
sionality methods are purposely developed to handle the complexity 
appropriately. However, the more complex the model the greater the 
consequences of inadequate external validation or inadequate model 
reporting on model prediction quality [51]. Consequently, in this 
emerging era of high-dimensionality modelling, the relevance of the 
translation between experimental models and mathematical models 
becomes ever more important. 

Clinical utility of AI-based models 

Radiobiological responses involve complex interactions between 
patient, treatment, absorbed radiation dose distribution, and tumour 
microenvironment factors in a multi-omics setting. AI/ML has strengths 
compared to conventional statistical modelling at identifying non-pre- 
specified and non-linear interactions and should therefore be very well 
suited for radiobiological applications. Examples of such translational 
research application opportunities are preclinical studies that make use 
of AI to develop biomarkers using preclinical models with defined mo
lecular and cellular characteristics in order to test the relevance thereof 
in clinical outcome studies[52]. or the use of preclinical study data to 
inform the development of radiomics/imaging-based prediction models 
using AI [15,53,54]. However, the use in the clinical and preclinical 
radiobiology scenarios is yet to be fully exploited. 

AI-based TCP/NTCP models are multifactorial and susceptible to 
overfitting and prediction bias risks [55]. Thus, quality assurance of 
these models should be considered during the development phase and 
maintained post deployment for as long as the model is clinically used 
through multidisciplinary collaboration (post-deployment surveillance). 
A distinction is yet to be made between training/development and 
deployment in the field [56]. External validation of prediction models is 
an important step prior to their deployment and clinical use [49,57]. 
However, legitimate concerns have been raised regarding the risks of 
overfitting, shortcut learning as well as biases when deploying these 
techniques [58,59]. Basic independent and external validation re
quirements are often not met. This can lead to poorly performing models 
as exemplified in controversial applications during Covid-19 [60–62] 
and the EPIC sepsis model debacle [49,63]. To overcome this challenge, 
several societies and journals have been developing guidelines and 
checklists to ensure rigor and reproducibility of AI/ML methods 
emphasizing the need for transparency in development and independent 
validation processes for deployment [49,56]. Known casual relation
ships should be respected for safe clinical application. The development 
of a checklist for RT outcome modelling was suggested during the 
workshop and can be modified for more extensive radiobiological 

response schemes using not only retrospective but prospective valida
tions as well. 

Interdisciplinary approaches to improved model development 

Radiobiology provides the conceptual basis for the description of RT 
responses by identifying the underlying processes. Most clinical models 
are, at their core, parsimonious, and phenomenological − attributes that 
limit the integration of radiobiological findings and biomarker studies. 
The architecture of current models will have to be revised to enable the 
integration and adaptation of multiple response defining variables as 
defined by their relevance in individual radiobiological and clinical 
studies. This demands both accurate and robust measurements of bio
logical response to radiation using different experimental models or 
samples analyses, and suitable quantitative descriptions through math
ematical models. In support of this process that requires the expertise in 
biological mechanisms and experimental validation methodologies, as 
well as clinical model development and medical physics, (Fig. 3) it is 
crucial to establish close collaboration across all disciplines [64,65] that 
is fostered by an interdisciplinary research community composed of 
medical physicists, radiobiologists, radiation oncologists, computational 
scientists, radiation therapists, radiologists, radiographers, epidemiolo
gists, statisticians and others in the field. Consequently, to improve the 
utility and relevance of radiation oncology models, the partners in these 
collaboration are to define the relevant approach together and early 
during the study-design phase. To further foster such modelling efforts 
and improvements, interdisciplinary research will also have to be 
nurtured and facilitated by supporting structures and exchange oppor
tunities to realize truly integrated multidisciplinary approaches 
[66–68]. Integrally interlinked from the outset, a close partnership be
tween specialities will undoubtedly generate a multitude of opportu
nities to strengthen clinical model development and to resolve the 
restricted translation of biological experimental and analytical data into 
clinical practice. 

Well-placed within ESTRO and ESTRO’s vision [69], dedicated sci
entists would be able to combine expertise and data in international and 
interdisciplinary networks of radiation oncology model developers. 
However, there is an apparent lack of integrated approaches to establish 
strong partnerships and joint strategies across disciplines. This is further 
impeded by a paucity of international collaboration funding 
opportunities. 

The DREAM team propositions 

This position paper highlights the challenges met by physicists, ra
diobiologists, data scientists and oncologists in advancing dose 
response, experiment, analysis, and modelling for RT. The DREAM 
workshop that discussed these produced propositions to address these 
challenges (Table 2). Propositions were generated that 1) address the 
scientific needs and requirements to improve radiation oncology models 
(Table 2A) and that 2) support interdisciplinary partnerships to achieve 
this remit (Table 2B). 

To realize this and enable cross-fertilization, interdisciplinarity will 
have to be actively pursued when organizing workshops and confer
ences in this field. Critical in-depth reviews, the development of 
guidelines and QA/QC recommendations are among the first activities 
required to address the current challenges. Other imminent plans in this 
respect encompass the generation of recommendations and tools that 
address data sharing and data quality issues and improve the validity 
and utility of models. Radiation oncology model development focused 
work streams and working groups should be established that leverage 
and integrate all relevant expertise by actively reaching out to other 
disciplines. These could provide the framework for the initiation and 
development of interdisciplinary guidelines, projects and collaborations 
and consensus on standardization and clinical data quality re
quirements. ERRS, EFOMP and multi- and interdisciplinary societies 
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such as ESTRO can play a crucial role in facilitating such endeavors. 
Furthermore, to enable close collaborations, teaching and training op
portunities and interdisciplinary research training programs can facili
tate communication and knowledge-transfer across disciplines. Training 
of the interdisciplinary radiation oncology model developer of the future 
requires the concerted effort of all disciplines involved. Finally, large 
societies such as ESTRO could play a role in advising funding agencies to 
address this paucity of the required international and interdisciplinary 
collaborations in specific calls. 

Conclusions 

Better prediction models are needed to advance radiotherapy. This 
can only be achieved by strongly encouraging interdisciplinary efforts 
that harness the respective expertise of the involved disciplines. We 
concluded that enhanced radiobiological and computational technolo
gies enable the generation of clinically relevant and adaptive models for 
personalized risk prediction in modern RT. An improved mechanistic 
understanding of radiobiological concepts and novel technologies, such 
as AI, provide ample opportunities to support model development and 
the clinical utility that is paramount to radiation oncology prediction 
models. We recommend that early and close interdisciplinary partner
ships are supported to ultimately improve model development, perfor
mance, and assessment. These partnerships and joint strategies across 
disciplines are essential to advance prediction models in radiation 
oncology. 
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the work reported in this paper. 
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