2,399 research outputs found

    Julius Africanus

    Get PDF

    Validity of a pictorial perceived exertion scale for effort estimation and effort production during stepping exercise in adolescent children

    Get PDF
    This is the author's PDF version of an article published in European Physical Education Review ©2002. The definitive version is available at http://epe.sagepub.com.Recent developments in the study of paediatric effort perception have continued to emphasise the importance of child-specific rating scales. The purpose of this study was to examine the validity of an illustrated 1 – 10 perceived exertion scale; the Pictorial Children’s Effort Rating Table (PCERT). 4 class groups comprising 104 children; 27 boys and 29 girls, aged 12.1±0.3 years and 26 boys, 22 girls, aged 15.3±0.2 years were selected from two schools and participated in the initial development of the PCERT. Subsequently, 48 of these children, 12 boys and 12 girls from each age group were randomly selected to participate in the PCERT validation study. Exercise trials were divided into 2 phases and took place 7 to 10 days apart. During phase 1, children completed 5 x 3-minute incremental stepping exercise bouts interspersed with 2-minute recovery periods. Heart rate (HR) and ratings of exertion were recorded during the final 15 s of each exercise bout. In phase 2 the children were asked to regulate their exercising effort during 4 x 4-minute bouts of stepping so that it matched randomly prescribed PCERT levels (3, 5, 7 and 9). Analysis of data from Phase 1 yielded significant (P<0.01) relationships between perceived and objective (HR) effort measures for girls. In addition, the main effects of exercise intensity on perceived exertion and HR were significant (P<0.01); perceived exertion increased as exercise intensity increased and this was reflected in simultaneous significant rises in HR. During phase 2, HR and estimated power output (POapprox) produced at each of the four prescribed effort levels were significantly different (P<0.01). The children in this study were able to discriminate between 4 different exercise intensities and regulate their exercise intensity according to 4 prescribed levels of perceived exertion. In seeking to contribute towards children’s recommended physical activity levels and helping them understand how to self-regulate their activity, the application of the PCERT within the context of physical education is a desirable direction for future research

    MRST2001: partons and α <SUB>S</SUB> from precise deep inelastic scattering and Tevatron jet data

    Get PDF
    We use all the available new precise data for deep inelastic and related hard scattering processes to perform NLO global parton analyses. These new data allow an improved determination of partons and, in particular, the inclusion of the recent measurements of the structure functions at HERA and of the inclusive jets at the Tevatron help to determine the gluon distribution and aS better than ever before. We find a somewhat smaller gluon at low x than previous determinations and that aS (MZ2) = 0.119 ±0.002 (expt.) ±0.003 (theory)

    Uncertainties of predictions from parton distributions I: experimental errors

    Get PDF
    We determine the uncertainties on observables arising from the errors on the experimental data that are fitted in the global MRST2001 parton analysis. By diagonalizing the error matrix we produce sets of partons suitable for use within the framework of linear propagation of errors, which is the most convenient method for calculating the uncertainties. Despite the potential limitations of this approach we find that it can be made to work well in practice. This is confirmed by our alternative approach of using the more rigorous Lagrange multiplier method to determine the errors on physical quantities directly. As particular examples we determine the uncertainties on the predictions of the charged-current deep-inelastic structure functions, on the cross-sections for W production and for Higgs boson production via gluon-gluon fusion at the Tevatron and the LHC, on the ratio of W- to W+ production at the LHC and on the moments of the non-singlet quark distributions. We discuss the corresponding uncertainties on the parton distributions in the relevant x,Q2 domains. Finally, we briefly look at uncertainties related to the fit procedure, stressing their importance and using sW, sH and extractions of aS(MZ2) as examples. As a by-product of this last point we present a slightly updated set of parton distributions, MRST2002

    Determining the Gluon Distributions in the Proton and Photon from Two-Jet Production at HERA

    Full text link
    Two-jet production from the direct photon contribution at HERA is a sensitive measure of the small-xx gluon in the proton. We propose measurements of ratios of the jet cross-sections which will clearly distinguish between gluons with or without singular behaviour at small xx. Furthermore, we show that analogous ratio measurements for the resolved photon contribution provide a sensitive way of determining the gluon distribution in the photon.Comment: Rutherford Appleton Laboratory report RAL-93-071 7 pages 3 figs Fig2 and Fig3 included as psfile

    Pinning down the Glue in the Proton

    Get PDF
    The latest measurements of F2F_2 at HERA allow for a {\it combination} of gluon and sea quark distributions at small xx that is significantly different from those of existing parton sets. We perform a new global fit to deep-inelastic and related data. We find a gluon distribution which is larger for x \lapproxeq 0.01, and smaller for x0.1x \sim 0.1, and a flatter input sea quark distribution than those obtained in our most recent global analysis. The new fit also gives αs(MZ2)=0.114\alpha_s(M_Z^2) = 0.114. We study other experimental information available for the gluon including, in particular, the constraints coming from fixed-target and collider prompt γ\gamma production data.Comment: 8 pages, LATEX, 6 figs available as .uu fil

    Multigrid Monte Carlo Algorithms for SU(2) Lattice Gauge Theory: Two versus Four Dimensions

    Get PDF
    We study a multigrid method for nonabelian lattice gauge theory, the time slice blocking, in two and four dimensions. For SU(2) gauge fields in two dimensions, critical slowing down is almost completely eliminated by this method. This result is in accordance with theoretical arguments based on the analysis of the scale dependence of acceptance rates for nonlocal Metropolis updates. The generalization of the time slice blocking to SU(2) in four dimensions is investigated analytically and by numerical simulations. Compared to two dimensions, the local disorder in the four dimensional gauge field leads to kinematical problems.Comment: 24 pages, PostScript file (compressed and uuencoded), preprint MS-TPI-94-

    A simple optical setup for current mapping of small area PV devices using different sampling strategies

    Get PDF
    An optical setup for current mapping of photovoltaic devices is presented. It is based on a digital micro-mirror device (DMD) and a small number of additional optical elements making the implementation simple and cost effective. The specific properties of the DMD chip enable the application of two different sampling methods; point by point sampling and compressive sampling. Both sampling strategies are compared and cases when each one of them performs better are investigated. It is shown that compressive sampling can significantly enhance weak current signals and provide current maps in the cases when the point by point current signal is below the noise threshold
    corecore