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Abstract

We determine the uncertainties on observables arising from the errors on the experi-

mental data that are fitted in the global MRST2001 parton analysis. By diagonalizing the

error matrix we produce sets of partons suitable for use within the framework of linear

propagation of errors, which is the most convenient method for calculating the uncertain-

ties. Despite the potential limitations of this approach we find that it can be made to

work well in practice. This is confirmed by our alternative approach of using the more

rigorous Lagrange multiplier method to determine the errors on physical quantities di-

rectly. As particular examples we determine the uncertainties on the predictions of the

charged-current deep-inelastic structure functions, on the cross-sections for W production

and for Higgs boson production via gluon–gluon fusion at the Tevatron and the LHC, on

the ratio of W− to W+ production at the LHC and on the moments of the non-singlet

quark distributions. We discuss the corresponding uncertainties on the parton distribu-

tions in the relevant x,Q2 domains. Finally, we briefly look at uncertainties related to the

fit procedure, stressing their importance and using σW , σH and extractions of αS(M2
Z) as

examples. As a by-product of this last point we present a slightly updated set of parton

distributions, MRST2002.

1Royal Society University Research Fellow.
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1 Introduction

Recently, much attention has been focused on uncertainties associated with the parton distri-

butions that are determined in the next-to-leading order (NLO) global analyses of a wide range

of deep inelastic and related scattering data. There are many sources of uncertainty, but they

can be divided into two classes: those which are associated with the experimental errors on the

data that are fitted in the global analysis and those which are due to what can loosely be called

theory errors. In this latter category we have uncertainties due to (i) NNLO and higher-order

DGLAP contributions, (ii) effects beyond the standard DGLAP expansion, such as extra ln x

and ln(1−x) terms, higher twist and saturation contributions, (iii) the particular choice of the

parametric form of the starting distributions, (iv) heavy target corrections, (v) model assump-

tions, such as s = s̄. In order to estimate some of these ‘theory’ errors, we can also look at the

uncertainties arising from different choices of the data cuts (Wcut, xcut, Q2
cut), defined such that

data with values of W , x or Q2 below the cut are excluded from the global fit. This approach

indicates where the current theory is struggling to fit the data compared to other regions.

Here we study the uncertainties due to the errors on the data, and leave the discussion of

the ‘theory’ uncertainties to a second paper. Other groups [1]–[7] have also concentrated on the

experimental errors and have obtained estimates of the uncertainties on parton distributions

within a NLO QCD framework, using a variety of competing procedures. Of course, the parton

distributions are not, themselves, physical quantities. However, using the standard approach of

the linear propagation of errors, these uncertainties of the parton distributions can be translated

into uncertainties on observables. Therefore, we first follow the general approach in [4] and [5],

the Hessian method, and diagonalize the error matrix, parameterizing an increase in χ2 of the

fit in terms of a quadratic function of the variation of the parameters away from their best

fit values. This gives us a number of sets of partons with variations from the minimum in

orthogonal directions which can be used in a simple manner to calculate the uncertainty on any

physical quantity. However, this approach depends for its reliability on the assumption that

the quadratic dependence on the variation of the parton parameters is very good. We find that

this approximation, with some modifications of the precise framework, i.e. the elimination of

some parameters and rescaling of others, can be made to work well. We make available 30 sets

of partons – 2 for each of the 15 eigenvector directions in parton parameter space – which can

be used to calculate the uncertainties on any physical quantity.

Despite its convenience, the Hessian approach does suffer from some problems if one looks

at it in detail, and if one tries to extrapolate results, in particular if we consider large increases

in χ2. It is also not, in principle, the most suitable method when allowing αS to vary as one

of the free parameters in the fit. Hence, in this paper we also investigate the uncertainties on

observables directly. In order to do this we apply the Lagrange multiplier method [8] to the

observables themselves, therefore avoiding some of the approximations involved in the linear

propagation of errors from partons to the observables, and confirming that these approximations

do not usually cause serious problems. When using this Lagrange multiplier approach, the
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resulting sets of parton distributions, which correspond to the extreme values of each observable,

can to a certain extent be thought of as the maximum allowed variation of the dominant

contributing partons in the relevant kinematic (x, Q2) domain. We select observables which are

particularly relevant for experiments at present and future colliders, and which illustrate the

uncertainties on specific partons in a variety of kinematic (x, Q2) domains. In order to determine

the true uncertainty on quantities we also let αS(M2
Z) vary along with the parameters describing

the parton distributions directly, which is easy to implement in this approach. Some quantities

are then far more sensitive to αS(M2
Z) than others. Fortunately our global fit [9] produces a

value of αS(M2
Z) which is consistent with the world average, with the same type of error, i.e.,

αS(M2
Z) = 0.119 ± 0.002. Hence, it is completely natural to simply let αS(M2

Z) vary as a free

parameter in the fit in the same way as all the other parameters when determining uncertainties.

However, we also perform an investigation of the uncertainties with αS(M2
Z) fixed at 0.119 in

order to study more directly which variations in the parton distributions are responsible for

extreme variations in given physical quantities, and to compare with the results of the Hessian

approach.

The physical observables that we select as examples in this introductory study are, first,

the charged-current structure functions F CC
2 (e±p) for deep inelastic scattering at high x and

Q2 at HERA. These observables almost directly represent the d, u valence quarks at high x

and Q2, where deep inelastic data do exist [10]–[12], but have errors of 25% or more at present.

The precision on these data is expected to increase dramatically in the near future. Second,

we determine the uncertainties on the cross-sections σW and σH , for W boson production and

for the production of a Higgs boson of mass2 MH = 115 GeV by gluon fusion respectively, at

Tevatron and LHC energies. The cross section σW is sensitive to the sea quarks (and also, at

the Tevatron energy, weakly sensitive to the valence quarks) in a range of rapidity centered

about x ∼ MW /
√

s, and for Q2 ∼ M2
W . Similarly, σH is sensitive to the gluon distribution in

the domain x ∼ MH/
√

s and Q2 ∼ M2
H .

As a third example we determine the uncertainty on the ratio of W− to W+ production at

the LHC energy. This ratio is expected to be extremely accurately measured in the LHC exper-

iments. Other relevant examples, which we study, are the uncertainties of the moments of the

non-singlet (u–d) quark distributions. These are quantities for which lattice QCD predictions

are becoming available, see, for example, Refs. [13, 14].

The same techniques can be easily and quickly applied to a wide variety of other physical

processes sensitive to different partons and different domains. Besides giving a direct evaluation

of the uncertainties on the observables, we can, in principle, unfold this information to map out

the uncertainties on NLO partons over the whole kinematic domain where perturbative QCD

is applicable.

The plan of the paper is as follows. In Section 2 we discuss the Hessian method, and

outline our extraction of different parton distribution sets using this approach. In particular

2There is nothing special about the choice of 115 GeV. We may choose different values in order to probe the

gluon in different x, Q2 domains.
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we highlight the problems encountered, and how they are dealt with in order to obtain reliable

results. We make the sets of partons obtained publicly available. In Section 3 we briefly recall

the elements of the Lagrange multiplier method. In the following four sections we determine

the uncertainties of the observables that we have mentioned above. This will involve a series

of global fits in which the observables are constrained at different values in the neighbourhood

of their values obtained in the optimum global fit. In each case we explore, and discuss, the

allowed variation of the dominantly contributing partons. Using this more rigorous method

we also confirm the general appropriateness of the Hessian approach, but discuss where it can

start to break down.

Finally, in Section 8, we summarize and briefly investigate the uncertainties associated with

the initial assumptions made in performing the global fit. In order to do this we compare

the W and H boson predictions with those obtained using both a slightly updated set of our

own partons, MRST2002, and using the CTEQ6 partons [5]. (All the results in Sections 2–7

are based on MRST2001 partons [9].) We find that for the comparison with CTEQ some of

the variations in predictions are surprisingly large. We also illustrate the same result for the

extractions of αS(M2
Z) by various different groups. This implies that uncertainties involved with

initial assumptions and also with theoretical corrections can be more important than those due

to errors on the data.

2 The Hessian method

The basic procedure involved in this approach is discussed in detail in [4], but we briefly

introduce the important points here. In this method one assumes that the deviation in χ2

for the global fit3 from the minimum value χ2
0 is quadratic in the deviation of the parameters

specifying the input parton distributions, ai, from their values at the minimum, a0
i . In this case

we can write

∆χ2 = χ2 − χ2
0 =

n∑

i=1

n∑

j=1

Hij(ai − a0
i )(aj − a0

j ), (1)

where Hij is an element of the Hessian matrix, and n is the number of free input parameters.

In this case the standard linear propagation of errors allows one to calculate the error on any

quantity F using the formula

(∆F )2 = ∆χ2
n∑

i=1

n∑

j=1

∂F

∂ai

Cij(a)
∂F

∂ai

, (2)

where Cij(a) = (H−1)ij is the covariance, or error matrix of the parameters, and ∆χ2 is the

allowed variation in χ2. Hence, in principle, once one has either the Hessian or covariance

matrix (and a suitable choice of ∆χ2) one can calculate the error on any quantity.

3The data that are fitted can be found in Refs. [6, 10, 11] and [15]–[29]. We treat the errors as in [9].
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However, as demonstrated in [4], it more convenient and more numerically stable to diag-

onalize either the Hessian or covariance matrix, and work in terms of the eigenvectors. Since

the Hessian and covariance matrices are symmetric they have a set of orthogonal eigenvectors

defined by
n∑

j=1

Cij(a)vjk = λkvik. (3)

Moreover, because variations in some directions in parameter space lead to deterioration in

the quality of the fit far more quickly than others, the eigenvalues λk span several orders of

magnitude. Hence it is helpful to work in terms of the rescaled eigenvectors eik =
√

λkvik. Then

the parameter displacements from the minimum may be expressed as

∆ai ≡ (ai − a0
i ) =

n∑

k=1

eikzk, (4)

or using the orthogonality of the eigenvectors

zi = (λi)
−1

n∑

k=1

eki∆ak, (5)

i.e., the zi are the appropriately normalized combinations of the ∆ak which define the orthogonal

directions in the space of deviation of parton parameters. In practice a zi is often dominated

by a single ∆ak.
4

The error determination becomes much simpler in terms of the zi. The increase in χ2 is

∆χ2 =
n∑

i=1

z2
i , (6)

i.e., the surface of constant χ2 is a hyper-sphere of given radius in z-space. Similarly the error

on the quantity F is now

∆F =
√

∆χ2

[ n∑

i=1

(
∂F

∂zi

)2 ]1/2

. (7)

Thus it is convenient to introduce parton sets S±

k for each eigenvector direction, i.e., from

Eq. (4) we define

∆ai(S
±

k ) = ±teik, (8)

where the tolerance t is defined by t =
√

∆χ2 and ∆χ2 is the allowed deterioration in fit quality

for the error determination. Then, assuming the quadratic behaviour of F about the minimum,

(7) becomes the simple expression

(∆F ) =
1

2

[
n∑

k=1

(
F (S+

k ) − F (S−

k )
)2

] 1

2

. (9)

4CTEQ have even implemented the diagonalization procedure in the fitting procedure itself in order to

improve numerical stability [30]. We do not think this will have effects significant enough to outweigh the

inherent errors in the Hessian approach described below.
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If everything were ideal this framework would provide us with a simple and efficient method

for calculating the uncertainty due to experimental errors on any quantities, where we would

use the standard choice of ∆χ2 = 1. However, the real situation is not so simple, and there are

two major complications we must overcome in order to obtain reliable results.

Although, in principle, the 1σ uncertainty in any cross-section should be given by ∆χ2 = 1,

the complicated nature of the global fitting procedure, where a large number of independent

data sets are used, results in this being an unrealistically small uncertainty [31]. This is un-

doubtedly due to some failure of the theoretical approximation to work absolutely properly

over the full range of data, which introduces the type of theoretical errors outlined in the In-

troduction, and also due to some sources of experimental error not being precisely quantified.

Both problems are in practice extremely difficult to surmount. We shall implicitly ignore the

potential theoretical error in this paper, but account for the lack of ideal behaviour in the

framework by determining the uncertainties using a larger ∆χ2. We estimate ∆χ2 = 50 to be a

conservative uncertainty (perhaps of the order of a 90% confidence level or a little less than 2σ)

due to the observation that an increase of 50 in the global χ2, which has a value χ2 = 2328 for

2097 data points, usually signifies that the fit to one or more data sets is becoming unaccept-

ably poor. We find that an increase ∆χ2 of 100 normally means that some data sets are very

badly described by the theory. Though this estimation does not rely on any real mathematical

foundation we do not think it is any less valid than the approaches used in e.g. [5] or [1, 7], both

of which ultimately appeal to some value judgment rather than using all available information

in a statistically rigorous manner, and ultimately give similar results. The approaches [2, 3, 6]

do use ∆χ2 = 1 but either rely on much smaller and more internally compatible data sets, or

in some cases have rather small errors.

The second complication is the breakdown of the simple quadratic behaviour in terms of

variations of the parameters, i.e., the fact that Eq. (1) may receive significant corrections

and the simple linear propagation of errors is therefore not accurate. Of course, we expect

some deviations from this simple form for very large ∆χ2, but unfortunately very significant

deviations can occur for relatively small ∆χ2, as outlined below. Due to the very large amount

of data in our global fit, we have a lot of parameters in order to allow sufficient flexibility

in the form of the parton distributions. Each of the valence quarks and the total sea quark

contribution are parameterized in the form

xq(x, Q2
0) = A(1 − x)η(1 + ǫx0.5 + γx)xδ, (10)

where for the valence quarks the normalization A is set by the number of valence quarks of

each type. Because we find it necessary to have a negative input gluon at low x the gluon

parameterization has been extended to

xg(x, Q2
0) = Ag(1 − x)ηg(1 + ǫgx

0.5 + γgx)xδg − A−(1 − x)η
−x−δ

− , (11)

where Ag is determined by the momentum sum rule, and η− can be set to some fixed large value,

e.g. 10 or 20, so that the second term only influences large x. The combination ∆q = ū − d̄
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has a slightly different parameterization, i.e.,

x∆q(x, Q2
0) = A(1 − x)η(1 + γx + δx2)xδ. (12)

Overall, this gives 24 free parameters. In our standard fits we allow all these parameters to vary.

However, when investigating in detail the small departures from the global minimum we notice

that a certain amount of redundancy in parameters leads to potentially disastrous departures

from the behaviour in Eq. (1). For example, in the negative term in the gluon parameterization

very small changes in the value of δ− can be compensated almost exactly by a change in A−

and (to a lesser extent) in the other gluon parameters over the range of x probed, and therefore

changes in δ− lead to very small changes in χ2. However, at some point the compensation starts

to fail significantly and the χ2 increases dramatically. Hence, this certain degree of redundancy

between δ− and A− leads to a severe breaking of the quadratic behaviour in ∆χ2. Essentially

the redundancy between the parameters leads to a very flat direction in the eigenvalue space (a

very large/small eigenvalue of the covariance/Hessian matrix) which means that cubic, quartic

etc. terms dominate. During the process of diagonalization this bad behaviour feeds through

into the whole set of eigenvectors to a certain extent.

Therefore, in order that the Hessian method work at all well we have to eliminate the largest

eigenvalues of the covariance matrix, i.e., remove the redundancy from the input parameters.

In order to do this we simply fix some of the parameters at their best fit values so that the

Hessian matrix only depends on a subset of parameters that are sufficiently independent that

the quadratic approximation is reasonable. In fact we finish up with 15 free parameters in total

– 3 for each of the 5 different types of input parton. In particular, fixing the other parameters

at the best fit values we find that ηg, δg and δ− are sufficient for the gluon – one for high x,

one for medium x and one for low x. However, we emphasize that we cannot simply set the

other parameters to zero. For example A− must be of a size as to allow a sufficiently negative

input gluon at low x with a sensible value of δ−, but we cannot allow it to vary simultaneously

with δ−. We could possibly allow one or two more parameters to be free, but judge that the

deterioration in the quality of the quadratic approximation does not outweigh the improvements

due to increased flexibility in the parton variations. We note that this problem seems to be a

feature of the full global fits obtained by CTEQ and MRST, and that the other fitting groups

have not yet needed to introduce enough parameters to notice such redundancy. It has clearly

been noticed by CTEQ though, since in [4] they only have 16 free parameters out of a possible

22, and in [5], where they use a significantly altered type of parameterization, they have only

20 free parameters out of a possible 26.

Hence, we produce 30 sets of parton distributions labeled by S±

k to go along with the central

best fit; that is 15 “+” sets corresponding to each eigenvector direction, and 15 “–” sets5. Even

5In order to produce the errors on the parton distributions a higher numerical accuracy was required than

that used when we previously found just the “best fit”. This results in the partons from the central fit being

very slightly different to the standard MRST2001 partons, and we label them by MRST2001C. In fact some of

the input parameters are quite different to those in the MRST2001 default, but the partons themselves differ

by fractions of a percent. This is an example of the redundancy in some input parameters noted above. The 31

parton sets (S±
k

, MRST2001C) are available at http://durpdg.dur.ac.uk/hepdata/mrs .
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though we have limited the number of free parameters in the calculation of the Hessian matrix,

we note that we still have significant departure from the ideal quadratic behaviour. For the

10 or so lowest eigenvalues of the covariance matrix the quadratic approximation is very good

– the distance needed to go along one of the zi to produce ∆χ2 = 50 being the expected√
50 = 7.07 to good accuracy in both “+” and “–” directions. However, for 4 or 5 of the largest

eigenvalues of the covariance matrix, corresponding mainly to the large-x d quark, large-x gluon

and ū− d̄ distributions, the absolute scaling and symmetry break down somewhat. In the very

worst case of the largest eigenvalue, the scale factors to produce ∆χ2 = 50 are 9.5 and 4.5

in the two opposite directions. In order to produce the sets corresponding to ∆χ2 = 50 we

have to multiply the parton deviations required for ∆χ2 = 1 by these scale factors rather than

the expected 7.07. (In fact we do this for all 30 sets, but in most cases the scale factor is in

the range 6.5–7.5.) Hence, as in [4, 5], this necessitates the supply of both “+” and “–” sets,

whereas in the quadratic approximation one could easily be obtained from the other. Indeed

from Fig. 9 of [4] it is clear that CTEQ encounter a breakdown of the quadratic behaviour of

much the same type that we do.

Using the 30 parton sets S±

k corresponding to the 15 eigenvector directions for variations of

the partons about the minimum χ2, one can use Eq. (7) to calculate the error for any quantity,

assuming an allowed ∆χ2 = 50. In fact it has been proposed [32] that one may also account

for some of the asymmetry due to departures from quadratic behaviour by replacing Eq. (9) by

the slightly more sophisticated form

(∆F )+ =
[ ∑n

k=1

(
max(F (S+

k ) − F (S0
k), F (S−

k ) − F (S0
k), 0)

)2
] 1

2

(∆F )− =
[ ∑n

k=1

(
max(F (S0

k) − F (S+
k ), F (S0

k) − F (S−

k ), 0)
)2

] 1

2

, (13)

where S0
k represents the best fit set of partons. In [32] and [33] examples are discussed where

the use of Eq. (13) instead of Eq. (9) leads to not only an asymmetric error, but also a larger

uncertainty overall. We find only fairly minor effects, with no real evidence that Eq. (13) leads

to markedly more reliable results than Eq. (9), so we use the simpler Eq. (9) in this paper.

As an example of the use of the Hessian method we show in Figs. 1–4 the uncertainty on

some of the parton distributions at various values of Q2, namely the uV distribution, the dV

distribution and the gluon distribution respectively. As one sees, the uV distribution is very well

determined, and the uncertainty shrinks slightly with increasing Q2. The lowest uncertainty

is in the region of x = 0.2 where there are very accurate data which mainly constrain the

valence quarks. At lower x the direct constraint is on the sum of valence and sea quarks. The

dV distribution is also well determined in general, but is rather more uncertain as we go to

the highest x values. The gluon distribution is known less well, but at the highest Q2 has an

uncertainty of as little as 5% for x ∼ 0.05 where it is constrained by both dF2(x, Q2)/d lnQ2

of the HERA data and the lowest-ET Tevatron jet data. It becomes very uncertain for x ≥ 0.4

where only the relatively imprecise highest-ET jet data provide any information. The fractional

uncertainty at very small x decreases very rapidly as Q2 increases because much of the small-x
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gluon at higher Q2 is generated from that at higher x via evolution. We also show the gluon at

Q2 = 2 GeV2 explicitly in Fig. 4. At this low scale the central gluon is negative at x = 0.0001,

but we see that the gluon may be positive within the uncertainty. This just about persists

if we go to as low as x = 10−5 at this Q2, but at our input scale Q2
0 = 1 GeV2 the gluon

would be negative for x less than 0.0005, outside the level of uncertainty chosen. Also shown

on the plots are the CTEQ6M partons. For the dV distribution the agreement is excellent. For

the uV distribution the agreement at x ≥ 0.05 is very good, but there is a discrepancy below

this value. However, in this range, the valence quarks become very small indeed and the data

only really constrain the total u distribution which is completely dominated by the sea. This

apparent discrepancy is probably due to parameterization effects, and is irrelevant in practice.

However, in Fig. 3 we see that the MRST and CTEQ gluons show a genuine and significant

level of incompatibility. We will comment on this more in Section 8.

One might worry that the fixing of some of the parameters, that determine the input

parton distributions, will cast some doubt on the error obtained. However, we stressed that

these are largely redundant parameters, and we have checked that the errors obtained (when

using ∆χ2 = 50) are indeed compatible with the errors obtained using more rigorous means,

i.e., the Lagrange multiplier method, in the following sections.6 Nevertheless, it is a sign of

the breakdown of the quadratic approximation. Of more practical concern is the fact that

this breakdown is also exhibited in a non-trivial manner in some of the eigenvectors used –

particularly those eigenvectors associated with the least known partons, e.g. the high-x down

quark and gluon. The scaling has been designed to give correct results if ∆χ2 = 50 is used.

However, one cannot simply extrapolate to different choices of ∆χ2. For example if ∆χ2 = 25

were deemed a more suitable choice, in principle the error would just be that using Eq. (7)

divided by
√

2, but the breakdown of quadratic behaviour does not guarantee this, especially for

some directions in parameter space. Also, if one wished to be very conservative in the estimation

of an uncertainty, simple extrapolation cannot reveal when ∆χ2 might start to increase rapidly.

We will see examples of this later.

Also we note that we have performed this analysis for a fixed value of the coupling constant:

αS(M2
Z) = 0.119. One can in principle include this as another free parameter. Indeed we then

find that the behaviour obeys the quadratic approximation quite well and that ∆χ2 = 50

gives an error of about ±0.003, corresponding well to our error of ±0.002 obtained in [9]

using ∆χ2 = 20. We will discuss extractions of αS(M2
Z) again in Section 8. However, for the

Hessian approach there is a slight difference between varying αS(M2
Z) and varying the parton

parameters. When αS(M2
Z) is fixed the maximum error on any quantity is obtained from

6We have checked the effects of using Eq. (13) instead of Eq. (9) in these comparisons. In all cases the former

only introduced a relatively small asymmetry in the uncertainty, with the average being very close indeed to the

result using the latter. Also, the asymmetry was of the same sign as that found using the Lagrangian approach

only half the time, i.e. the use of Eq. (13) did not reliably predict the direction of steeper increase of ∆χ2,

even when the asymmetry was quite large. We find this surprising, and have no good explanation. However,

it illustrates the semi-qualitative nature of the Hessian approach compared to the more rigorous Lagrange

Multiplier method.
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some linear combination of our different parton sets, and in principle one could reproduce the

particular parton set which corresponds to this linear combination, which would be a perfectly

well-defined set itself. However, a linear combination of αS(Q2) coming from contributions

with different αS(M2
Z) does not actually correspond to one particular choice of αS(M2

Z) (each

contribution has a branch point at a different value of Q2, so a linear combination will have

multiple branch points), so one cannot precisely define a particular set of partons corresponding

to a particular αS(M2
Z) for the extreme.

Hence, although the 30 parton sets obtained using the Hessian approach provide the most

convenient framework for calculating the uncertainties on a physical observable, for the reasons

described above we would also like to study an alternative approach, partially just to check how

well our adapted Hessian approach really works. A more robust method, which also allows us

to directly investigate the partons, and αS, corresponding to the extreme variations of a given

physical quantity is the Lagrange multiplier method. We study this in detail below.

3 Lagrange multiplier method

It is much more rigorous to investigate the allowed variation of a specific observable by using

the Lagrange multiplier method. This was also one of the approaches used by the CTEQ

collaboration [8]. In this, one performs a series of global fits while constraining the values σi

of one, or more, physical quantities in the neighbourhood of their values σ0
i obtained in the

unconstrained global fit. To be precise, we minimize the function

Ψ(λi, a) = χ2
global(a) +

∑

i

λiσi(a) (14)

with respect to the usual set a of parameters, which specify the parton distributions and the

coupling αS(M2
Z). This global minimization is repeated for many fixed values of the Lagrange

multipliers λi. At the minima, with the lowest Ψ(λi, a), the observables have the values σi(â)

and the value of χ2
global(â) is the minimum for these particular values of σi. These optimum

parameter sets â depend on the fixed values of λi. Clearly, when λi = 0, we have Ψ =

χ2
global = χ2

0 and σi = σ0
i . In this way we are able to explore how the global description of

the data deteriorates as the σi(â) move away from the unconstrained best fit values σ0
i . Thus

by spanning a range of λi we obtain the χ2
global profile for a range of values of σi about the

best fit values, σ0
i . In this study we take the best fit values corresponding to the MRST2001

partons [9].

This procedure involves none of the approximations involved in the Hessian approach. We

can use the full set of parameters in the fit, obtaining maximum flexibility in the partons without

having to worry about the large correlations or anticorrelations between some parameters. We

never make any assumption about quadratic dependence on the parameters, and indeed, by

using different values of the Lagrange multipliers, we can map out precisely how the quadratic

approximation breaks down in the uncertainty for any physical quantity. Also, one produces
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a particular set of partons with a particular value of αS(M2
Z) at every point in the space of

cross-sections for the physical quantities mapped, so the interpretation of the extremes is more

obvious and natural. Hence, in principle, this is a far superior method of obtaining uncertainties

to the Hessian approach. However, it suffers from the large practical disadvantage that a series

of global fits must be done every time one considers a new quantity. As examples we investigate

a number of interesting physical cases below.

4 The charged-current structure functions FCC
2 (e±p)

The ∆χ2 contour plot for the variation of F CC
2 (e+p) and F CC

2 (e−p) about their predicted values

from the unconstrained global fit is shown in Fig. 5, where we allow αS to be a free parameter

(unstarred labels) or fix it at the best fit value of αS(M2
Z) = 0.119 (starred labels). We show

the contours for ∆χ2 = 50, 100, etc. Overall, the ellipses one would expect from the quadratic

approximation for ∆χ2 in Section 2 are more or less what one sees, but there is a certain

asymmetry in that χ2 increases rather more rapidly for an increase in both F CC
2 (e+p) and

F CC
2 (e−p) than for a corresponding decrease in both.

Thus, from Fig. 5, we see that the uncertainties of the F CC
2 (e+p) and F CC

2 (e−p) structure

functions at x = 0.5 and Q2 = 10, 000 GeV2 (due to the experimental errors on the data in the

global fit) are about +15
−12 % and ±2% respectively. In comparison, the values using the Hessian

approach are ±10% and ±2% respectively, in good agreement, although slightly smaller for

F CC
2 (e+p). At this value of x the uncertainties in F CC

2 (e+p) and F CC
2 (e−p) have a particularly

simple interpretation since F CC
2 (e+p) is almost exactly proportional to the valence down quark

distribution, dV , and F CC
2 (e−p) is almost exactly proportional to the uV distribution. This

can clearly be seen in Fig. 6, which shows the u and d distributions for the extreme sets

(T*,U*,V* and W*) corresponding to maximum and minimum F CC
2 (e+p) and F CC

2 (e−p) (for

the case of fixed αS(M2
Z)). Rather obviously the d distribution maximises at large x for the

case of maximum F CC
2 (e+p) and minimises for minimum F CC

2 (e+p), with similar behaviour

for the u distribution and F CC
2 (e−p). Note however that in each case the extreme in the

parton distribution is not precisely at x = 0.5, but at slightly higher x, where the data are less

constraining. There are also sum rules on the partons which must be satisfied. It is also clear

that there is a strong inverse correlation between the u and d distributions. This is because

the data which constrain the relevant partons are the structure function measurements F2(lp),

F2(ld) and F2(3)(ν(ν̄)p) which are essentially proportional to 4u+d, u+d and u+d respectively,

where u ∼ 4d at x = 0.5. This constrains u far more than d as we have seen, but means that

for maximum variation in the partons a change in u must be compensated by a much larger

opposite change in d. The result that the major axis of the ellipse for given change in ∆χ2

is approximately aligned along 8F CC
2 (e+p) − F CC

2 (e−p) (i.e., 8d − u) is therefore not at all

surprising. The rate of quickest increase in χ2 is then along 8d + u, where the changes in the

partons add in such a way as to maximise changes in the measured structure functions.
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We see that allowing αS(M2
Z) to also vary allows the error ellipses to grow slightly, mainly

in width. Now the maximum and minimum allowed values of F CC
2 (e−p) (or u) correspond to

αS(M2
Z) = 0.117 and 0.120 and to parton sets T and V respectively. Most of the constraining

data are for Q2 ≪ 10, 000 GeV2, and must be well fit, but smaller αS means slower evolution

of the quarks and thus greater values of u and F CC
2 (e−p) at Q2 = 10, 000 GeV2. Opposite

considerations lead to the maximum F CC
2 (e−p). Since the extrema of F CC

2 (e+p) and d are

more involved, due to the negative correlation with the u distribution, they are less altered

by allowing αS to vary; see sets U and W. We see that the axes of the ellipse are essentially

unchanged when αS is left free. Thus Fig. 6 is much the same except that the variations for

parton sets T and V are a little greater than for T∗ and V∗.

It is, of course, the fixed target data which constrain these cross-sections and the high-x

quarks. It is very largely the BCDMS F2(ed) measurements which are responsible for the upper

extremum in F CC
2 (e+p). The best fit tends to overshoot these data in the region of x = 0.5,

and a large increase in d makes the fit to these measurements very poor. For the extrema in

F CC
2 (e−p) and u, the deterioration is more evenly spread over pretty much all the fixed target

data at x ≃ 0.5 (with the exception that the description of the BCDMS F2(d) measurements

improves slightly), but the cumulative result is a very poor fit. One of the worst instances of

deterioration is for the NMC F2(n)/F2(p) ratio.

5 W and H production at the LHC and Tevatron

The ∆χ2 contour plot for the variation of σW and σH about their predicted values at the LHC

energy from the unconstrained global fit is shown in Fig. 7, where again we allow αS to be a

free parameter or fix it at αS(M2
Z) = 0.119. Again we show the contours for ∆χ2 = 50, 100, etc.

This time the Hessian approach should work well, although the ellipses start becoming a little

rectangular. Allowing αS(M2
Z) to vary, we see that the uncertainties of the W and H cross-

sections at the LHC (due to the experimental errors on the data in the global fit) are about
+2.5
−2.0 % and ±3% respectively, and are positively correlated.

Again this analysis also gives information on the uncertainties of particular parton distribu-

tions. To be specific, the parton sets which correspond to the points A,B,C,D, on the ∆χ2 = 50

contour in Fig. 7, give the uncertainties in the parton distributions that dominantly determine

σW and σH in the kinematic domain x ∼ 0.005, Q2 ∼ 104 GeV2 relevant to W and H production

at the LHC. The extrema in σW , represented by A and C, correspond to variations in the sea

quark distributions, while the extrema in σH , represented by B and D, correspond to variations

in the gluon distribution and αS(M2
Z). The values of αS for sets A and C are 0.119 and 0.118

respectively, both very close to the default MRST2001 value, showing that σW , which begins

at zeroth order, is insensitive to αS. However, the values of αS for fits B and D are 0.120 and

0.117 respectively, reflecting the fact that σH ∝ α2
S. This is well illustrated by repeating the

entire analysis with αS fixed at the default value (0.119) obtained in the unconstrained global
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fit [9]. The ∆χ2 = 50 and 100 contours for this additional analysis are shown by the smaller

shapes in Fig. 7. We can see that the uncertainty on σW is almost unchanged, while that for

σH is reduced to about ±2%. The corresponding values using the Hessian approach are ±1.8%

and ±1.8%, in good agreement but slightly smaller in each case.

The up quark distribution for each ‘extrema’ set with fixed αS(M2
Z) is shown in Fig. 8(a)

and the gluon distribution in Fig. 8(b). We see that indeed the parton distributions do reflect

the extrema in the cross-sections in a fairly simple manner. The quark densities at high x show

almost no variation between fits since they are well constrained at high x and because the W

and H production cross-sections are sensitive to the partons at an x range centered at a few

×10−3. Indeed the maximum and minimum W cross-sections correspond to the maximum and

minimum sea quarks for x ≤ 0.05 at Q2 ∼ 10, 000 GeV2. The maximum and minimum Higgs

cross-sections correspond to the maximum and minimum gluon distributions in the same sort

of range, although the large x gluon must now decrease for increases in the small x partons,

and vice versa, in order to maintain the momentum sum rule. The strong correlation between

the two cross-sections is due to the fact that at high Q2 the size of the quark distribution at

small x is mainly determined by evolution, and the larger the small x gluon the stronger the

quark evolution (and vice versa). When αS is left free the resulting partons at the extrema are

similar to the fixed αS results. However, in this case, their variation is a little larger at smaller

Q2, since the slight changes in αS lead to different rates of evolution.

For the case of fixed αS the main contributions to ∆χ2 come from the HERA small-x

structure function data and, because of the changes in the high x gluon, also from the Tevatron

jet data. For the upper extrema in σW and σH the slope dF2(x, Q2)/d lnQ2 tends to be too

large for x ≤ 0.001, while for the lower extrema the slope is too small. In both cases the fit to

jet data deteriorates due to the shape of the high-x gluon becoming wrong. When αS(M2
Z) is

allowed to vary the data which are particularly sensitive to this also play a role, for example

the BCDMS data are fitted less well when αS(M2
Z) = 0.120 in fit B, and the NMC data are

described less well when αS(M2
Z) = 0.117 in fit D.

The corresponding ∆χ2 contour plot for the Tevatron is shown in Fig. 9, where again we

either allow αS to be a free parameter or fix it at αS(M2
Z) = 0.119. We see that the uncertainty

of the W cross-section at the Tevatron (due to the experimental errors on the data in the global

fit) has decreased to about ±1.5% while that for the Higgs has increased to about ±8% for

varying αS(M2
Z), and that the correlation has disappeared. For αS(M2

Z) fixed at 0.119 σW is

again largely unaffected, but the uncertainty of σH now more than halves to about +3
−4.5% ,

reflecting the fact that this time the maximum and minimum Higgs cross-sections for variable

αS correspond to αS(M2
Z) = 0.1215 and αS(M2

Z) = 0.116 respectively. With αS(M2
Z) fixed

there is now even a very slight anti-correlation between the cross-sections.

The extrema in σW , represented by P and R, correspond roughly to variations in the quark

distributions at x ∼ 0.04, while the extrema in σH , represented by Q and S, correspond to

variations in the gluon distribution at x ∼ 0.06 and αS(M2
Z). The values of x sampled at

12



the Tevatron are an order of magnitude greater than at the LHC. This, coupled with the fact

that it is a proton–antiproton collider, rather than a proton–proton collider, complicates the

interpretation of the extremes of the cross-sections in terms of partons.

The up quark distribution for each extrema set with fixed αS(M2
Z) is shown in Fig. 10(a) and

the gluon distribution in Fig. 10(b). The corresponding distributions obtained when αS(M2
Z)

is allowed to vary are shown in Fig. 11. We first consider the cases of the maximum and

minimum W cross-sections, which are insensitive to whether αS is left to vary or not. For

discussion purposes, let us consider only the u and d quark flavour contributions. Then the W

cross-section is roughly proportional to

u(x1)d(x2) + d(x1)u(x2) + ū(x1)d̄(x2) + d̄(x1)ū(x2) (15)

where 1 refers to the proton and 2 to the antiproton and x1x2 = M2
W /s. Hence the average

value of xi = 0.04. This is sufficiently large that there is a distinct difference between the

quark and antiquark distributions, and the contribution to the cross-section from the quark

contribution is the greater. Hence, one can decrease the cross-section by replacing a quark by

its antiquark at x = 0.05, or vice versa. Of course, there is a fundamental constraint in doing

this due to the sum rule for each valence quark. However, the only real experimental constraint

is from the CCFR F3(x, Q2) data, all other structure function data being insensitive to the

distinction between quark and antiquark. In the optimum global fit most data would like there

to be more quarks at high x, while the CCFR F3(x, Q2) data would prefer more valence quarks

at x ≤ 0.1. This leads to a compromise where for the best fit the CCFR F3(x, Q2) data at low

x are undershot. The minimum σW is therefore achieved mainly by this exchange of quark for

antiquark, which most data are happy with, and hence the deterioration in χ2 at P (and P∗) is

almost entirely from the description of the CCFR F3(x, Q2) data. Hence, both the gluon and

quark distribution for P (and P∗) are hardly changed, as seen in Figs. 10 and 11, but u − ū

and d − d̄ decrease for x ∼ 0.05. Going in the other direction, an increase in qV (0.05) and

the consequent decrease in the valence quarks at higher x causes a large penalty in χ2 and the

maximum σW is achieved in a different manner. At x ∼ 0.05 the quark evolves much more

slowly than at x ∼ 0.05 and the density at Q2 ∼ 10, 000 GeV2 is determined largely by the

input value, and modified by the rate of evolution. Hence the maximum σW is achieved by

having a large quark distribution at x ∼ 0.05 at low Q2 and also by having an enhanced gluon

at x ∼ 0.05 to increase evolution. These are displayed in Figs. 10 and 11. The deterioration

in χ2 then comes mostly from the low Q2 quarks causing an overshooting of NMC structure

function data, but there is also a contribution due to the enhanced gluon at x ∼ 0.1 causing it

to be smaller for x > 0.1 and hence fitting the Tevatron jet data less well.

The extrema of the Higgs cross-section are also slightly complicated. It is not possible to

simply increase or decrease the gluon in a range centered on x ∼ 0.05 because this is precisely

the x region where the majority of the gluon’s momentum is carried, and this total is very

well constrained by the momentum sum rule and the accurate high x quark determination.

Therefore, for fixed αS(M2
Z) the change in σH is largely reliant on the fact that this total cross-

section actually probes quarks within about an order of magnitude either side of the central
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production value of x = MH/
√

s. Hence, as we see from Fig. 10 the maximum cross-section is

obtained from the gluon in set Q∗ which is slightly reduced for x < 0.04 and more enhanced for

x > 0.04 and the minimum cross-section is obtained from the gluon in set S∗ which is slightly

increased for x < 0.04 and more reduced for x > 0.04. In both cases those data sets sensitive

to the small x and large x gluon, i.e., HERA structure function data and Tevatron jet data

respectively, are those for which the description deteriorates. When αS(M2
Z) is allowed to go

free it varies by about ±0.003 and there is a large increase in the variation of σH . This is not

only because σH ∝ α2
S but also because the HERA data anti-correlate αS and the small x gluon.

Therefore, in set Q, for example, the increased value of αS(M2
Z) allows the small x gluon to

get much smaller, and the high x gluon much larger, compared to set Q∗. This compensation

between αS and the small x gluon also means that HERA data remains well fit, and it is the jet

data (particularly CDF), sensitive to large x, and the large αS-phobic BCDMS data, for which

the description deteriorates. Similar considerations apply to set S as compared to S∗. Here it

is the D0 jet data and the small αS-phobic SLAC and NMC data that are badly fit.

For ∆χ2 = 50 the Hessian approach gives an uncertainty of ±1.2% for σW and ±3% for σH ,

at the Tevatron energy. In simplistic terms this is in good agreement, but a little smaller for

the gluon-sensitive Higgs cross-section. However, in this case we see from Fig. 9 a very marked

asymmetry on the contour plot. For fixed αS(M2
Z) the ellipses are certainly not centered on

the best fit values, and for varying αS(M2
Z) we see that χ2 is clearly increasing far more rapidly

for increases in the predicted W cross-section than for corresponding decreases. Thus, it is

clear that within the framework of this fit, increases of the cross-section of much more than

3% are completely ruled out, whereas decreases of the same amount are much more acceptable.

This information would be largely lost in the Hessian approach, and for these quantities the

Lagrange multiplier method does supply some important additional information.

6 The ratio of W− to W + production at the LHC

The ratio of the W− to the W+ production cross-sections at hadron colliders is a particularly

interesting observable. The measurement is expected to be quite precise (better than ±1% at

the LHC, see e.g. [34]), since many of the experimental uncertainties cancel in the ratio. The

uncertainty in the prediction of the ratio at the LHC can be deduced from the ∆χ2 profile

shown in Fig. 12. Taking, as before, the ∆χ2 = 50 measure, we obtain ∆(W−/W+) = ±1.3%,

and the Hessian approach is in very good agreement with this. Since the W−/W+ ratio is

sensitive to the ratio of the d and u quark distributions, it is not surprising that the increase

in χ2 is almost entirely due to the NMC F2(n)/F2(p) data [25].

A detailed discussion of the W−/W+ ratio may be found in Ref. [35]. Consider, for instance,

the ratio as a function of the W rapidity y

dσ/dy(W−)

dσ/dy(W+)
≃

d(x1)ū(x2)

u(x1)d̄(x2)
≃

d(x1)

u(x1)
, (16)
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where x1 = MW ey/
√

s = 0.0057ey at the LHC. In Eq. (16) we have ignored, for simplicity, the

contributions involving strange and heavier quarks. Thus a measurement of the ratio at large y

would provide a direct determination of d/u at large x. For example, for y ≃ 4, we measure d/u

at x ∼ 0.3 at the LHC. Of course, it is the decay lepton rapidity that is measured, rather than

the parent W rapidity, and so the ratio in a given rapidity bin will have a greater uncertainty

than that for σ(W−)/σ(W+).

7 The moments of the (u–d) distribution

The parton distribution functions of the nucleon are fundamental quantities that should, in

principle, be calculable from first principles in QCD. In particular, the x moments of parton

distributions at a given scale Q2 are related, by the operator product expansion, to a product

of perturbatively calculable Wilson coefficients and non-perturbative matrix elements of quark

and gluon operators. The latter can be computed using lattice QCD and, indeed, in recent

years the precision of the lattice calculations has improved significantly. Although in principle

the lattice results can be related to moments of physical structure functions, in practice it is

more efficient to use parton distributions determined in a global fit to represent the physical

‘data’. Comparisons of recent lattice moment calculations with the predictions of earlier MRS

parton distributions are encouraging, see for example [13, 14].

In order to quantify the agreement between the lattice calculations and the parton dis-

tribution predictions it is obviously important to know the uncertainties in the latter. It is

straightforward to apply the Lagrange multiplier method used in previous sections to deter-

mine the uncertainties in observable cross-sections to the moments of parton distributions.

To avoid contamination from gluon contributions, the lattice calculations focus on the mo-

ments of non-singlet quark operators. For example, lattice results are available for the first

three moments of the combination u − d, i.e.,

Mu−d
N (Q2) =

∫ 1

0
dx xN−1 [u(x, Q2) − d(x, Q2)] (17)

with N = 2, 3, 4. The predictions of the MRST2001 set (at Q2 = 4 GeV2) for these moments

are given in Table 1.

The ∆χ2 contour plot for the (percentage) variation of the second and third moments about

their predicted values is shown in Fig. 13. We again show the ∆χ2 = 50 and 100 contours

corresponding to the fixed αS analysis, but there is evidently little difference between the fixed

and variable coupling results in this case.

As expected, there is a strong positive correlation between the two moments. Using the

∆χ2 = 50, varying αS criterion for defining a conservative error, we obtain errors of ±4.2%,

±4.8% and ±5.0% for the second, third and fourth moments respectively. The corresponding

predictions for the errors on the moments are also given in Table 1. The increasing relative
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error with increasing moment is to be expected – higher moments probe the x → 1 region where

there are fewer DIS structure function data. Again we notice that there is a small asymmetry

in the contours – the increase in χ2 when both moments increase being less severe than when

both moments decrease.

N Mu−d
N (4 GeV2) % error

2 0.1655(70) 4.2

3 0.0544(26) 4.8

4 0.0232(12) 5.0

Table 1: The moments and their errors of the (u–d) distribution, Eq. (17), predicted at Q2 =

4 GeV2 using MRST2001 partons [9].

The uncertainties on the moments using the Lagrange multiplier method with a fixed αS

are slightly smaller: ±4.1%, ±4.3% and ±4.7% for the second, third and fourth moments

respectively. These results are in excellent agreement with the (fixed αS) Hessian approach,

where the corresponding errors are ±3.9%, ±4.3% and ±4.6%.

Since, as we have already seen in Section 4, the u quark at high x is far more constrained

than the d quark, the allowed variation in these moments is mainly due to variations in the

dV distribution. The minimum extremum (H in Fig. 13) of the moments is therefore due to

the largest allowed dV distribution at high x and arises from a similar set of partons to those

for the maximum F CC
2 (e+p). Thus, as in this previous case, it is mainly the comparison to

the BCDMS F2(ed) measurements which causes the deterioration in the quality of the fit. The

maximum of the moments (G in Fig. 13) corresponds roughly to the minimum dV distribution

at high x and it is largely the fit to the F2(n)/F2(p) ratio that breaks down.

For a number of years, lattice QCD has been used to calculate the moments of nucleon

structure functions from first principles. The most recent comprehensive results are from the

LHPC-SESAM [13] and QCDSF [14] collaborations. Although the comparisons with experi-

ment (via parton distributions obtained from global fits) are encouraging, there are still many

problems to be overcome, for example finite lattice spacing and volume effects, renormalization

and mixing of operators, unquenching and chiral extrapolation to physical quark masses. A

comparison with the recent lattice results [13, 14] and the above MRST2001 moment predic-

tions reveals that (a) the errors in the latter are at present significantly smaller than in the

former, especially for the higher moments, and (b) the lattice results for the moments are sys-

tematically higher. The explanation appears to be that the linear chiral extrapolation used in

the lattice determinations is not valid – non-perturbative long-distance effects in the nucleon

gives rise to nonlinear, non-analytic dependence on mq [36]–[40] which is particularly important

at small mq. In the most recent analyses (see for example the comprehensive study in [41]),

the experimental (i.e., pdf) values for the moments are used to constrain a priori unknown
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non-perturbative parameters which enter in the non-analytic terms in the chiral extrapolation

formula. It will be interesting to investigate the effect of using the new MRST2001 moment

predictions and errors in such studies.

8 Comparison between different central parton sets

So far in this paper we have investigated the uncertainty on physical quantities coming from the

experimental error of the measurements used to determine the parton distributions. We have

discussed both the Hessian and Lagrange Multiplier approaches, concluding that the latter is in

principle preferable, but recognizing the practical advantages of the former. We have compared

the results each provide for the uncertainties using the ∆χ2 = 50 criterion, noting that they

are generally in good agreement. The Hessian approach does tend to give slightly smaller

uncertainties for the quantities sensitive to the least well-determined partons, i.e., σH which is

sensitive to the gluon distribution and F CC
2 (e+p) which is sensitive to the high-x down quark

distribution. This is probably partly due to the neglected effect of the not entirely redundant

parameters, and partly due to errors associated with those eigenvectors which do not respect

the quadratic approximation for ∆χ2 too well, which indeed are mainly concerned with the

gluon and high x down quark. However, the discrepancy is quite small, and we judge that we

can trust the Hessian approach, at least for ∆χ2 in the region of 50 or less, to give quantitative

results. Hence, for fixed αS(M2
Z) = 0.119, we have made available 30 parton sets corresponding

to the 15 different eigenvector directions in the space of variation of parton parameters away

from their values at the minimum χ2 of the global fit, each set corresponding to an increase in

χ2 of 50. These can easily be used to obtain the error on any physical quantity, as outlined

in Section 2. We have also made available various parton sets with fixed and varying αS(M2
Z)

corresponding to extreme variations in the predictions for various important cross-sections and

other relevant observables.

We note that the uncertainties obtained due to the errors on the experimental data are

generally very small, of the order of 1 − 5%, except for quantities sensitive to the high-x down

quark and gluon, where they can approach 10%. However, in all of this we have implicitly

assumed that the theoretical procedure is precisely compatible with the data used, we have

not considered the uncertainties due to (i) the data sets chosen, (ii) the choice of starting

parameterizations, (iii) the heavy target corrections, etc. In practice this is far from true,

as discussed in the Introduction. In this final section we acknowledge this to some extent

and investigate qualitatively the impact of the initial assumptions going into the fit on the

uncertainty on some quantities. In order to do this we first perform a slightly updated fit of

our own (which includes minor modifications in terms of parameterization and the treatment

of errors and data sets) so as to produce the best set of up-to-date partons. This was partially

inspired by the question of why CTEQ6 [5] gives a much better fit to the Tevatron jet data than

MRST2001, but also by the availability of new ZEUS data. We call the new set MRST2002
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partons.7

8.1 CTEQ6, MRST2001 and a new parton set (MRST2002)

We found that we can improve the fits to jets within the global fit by a couple of modifications.

In order to obtain the best global fit with partons input at Q2
0 = 1 GeV2 we had previously

found that we needed a parameterization which allows the gluon to go negative at small x.

Hence we used

xg(x, Q2
0) = Ag(1 − x)ηg(1 + ǫgx

0.5 + γgx)xδg − A−(1 − x)η
−x−δ

− , (18)

where A− ∼ 0.2, δ− ∼ 0.3 and η− was fixed at ∼ 10, so as not to affect the high x distribution.

Unexpectedly, allowing η− to vary to ∼ 25 resulted in a slight improvement in the fit to Tevatron

jets. We also modified our treatment of the errors for the Drell–Yan data [28]. The fit to these

data actually competes with that to the jets, and using only statistical errors, as in our previous

studies (the systematic errors being defined a little vaguely), over-emphasizes the effect of the

Drell–Yan measurements. Adding 5% systematic errors in quadrature to the statistical errors

(which is probably the best approach [28]) also improves the fit to the jet data. Both these

modifications appear appropriate and are implemented in our updated set. Also included in

the new analysis is the new ZEUS high-Q2 data [42], which has little effect on the partons.

The only significant change in the MRST2002 partons, compared to MRST2001 partons [9], is

an increase in the gluon at high x, which we show in Fig. 14. The fit to the Tevatron jet data

now has χ2 = 154/113 compared to χ2 = 170/113 for MRST2001, and the fit to The Drell–Yan

data with 5% systematic errors has χ2 = 187/136. The quality of fit for all other data sets is

almost identical to that for the MRST2001 partons.

The CTEQ6 partons are very similar to the MRST2001 (and MRST2002) partons in most

aspects. However, in this CTEQ analysis [5] a number of different choices are made about

the way in which the fit is implemented, which leads mainly to a significantly different gluon

distribution. These differences are: the development of a different type of parameterization

for the partons, which allows for a different shape at very high x; CTEQ omit data below

Q2 = 4 GeV2, compared to our choice of Q2 = 2 GeV2; they do not fit to some data sets used

in [9], i.e., they omit SLAC and one H1 high-Q2 set of F2 data; they use 10% systematic errors

(in quadrature) for Drell–Yan data; moreover, CTEQ have a positive-definite small-x gluon at

their starting scale of Q2
0 = 1.69 GeV2. They also use a massless charm prescription and there

are various other minor differences as compared with MRST.8

The CTEQ6 gluon is also shown in Fig. 14. Clearly MRST2002 has a similar high-x gluon

to CTEQ6, both being larger than MRST2001. However, the MRST gluons are different from

the CTEQ6 gluon at smaller x due to their freedom to have a negative input distribution, and

7The MRST2002 parton set can be found at http://durpdg.dur.ac.uk/hepdata/mrs .
8The way in which these different assumptions lead to an improved fit to the Tevatron jet data is outlined

in [43].

18



due to slight differences in the choice of data sets fitted. The different assumptions made in

obtaining the CTEQ partons, although they improve the quality of the jet fit, do not lead to

the best fit when including the data sets omitted by CTEQ and the fit is not good at all for

data with Q2 < 4 GeV2. Hence, within the context of trying to obtain as inclusive a global fit

as possible using NLO QCD, we take MRST2002 to be the best set of parton distributions.

8.2 Comparison of predictions for σW and for σH

The predictions for W and Higgs cross-sections using the different partons are shown in Fig. 15.

Since MRST2002 only differs from MRST2001 in the high x gluon, to which these cross-

sections are insensitive, the predictions for MRST2002 are very similar to those of MRST2001.

(Hence our decision to keep MRST2001 partons as the base set for this paper). However, the

corresponding predictions obtained using the CTEQ6 partons are quite different. At the LHC

the prediction for σW is similar, but σH is towards the top of our (qualitative) 95% confidence

level. From Fig. 14 this is clearly due to the larger gluon in the x ∼ 0.005 region, which is due

to the positive definite input for the CTEQ6 gluon. At the Tevatron the discrepancy between

CTEQ6 and MRST is even larger. The CTEQ6 predictions for both σW and σH are effectively

completely outside our expectations. The reason for the small prediction of σH is evident from

Fig. 14—the CTEQ6 gluon is considerably smaller in the region of x = 0.1. This, in turn,

is then responsible for a slower evolution of the quarks, making them smaller at high Q2 and

hence making σW smaller. Presumably the difference comes about because CTEQ6 use a more

restricted form of the gluon and omit one H1 data set and Q2 ≤ 4 GeV2 data which prefer larger

dF2(x, Q2)/d lnQ2. Whatever the precise reasons for the discrepancies, it is clear that different

choices for the overall framework of the global fit can completely outweigh the uncertainties

due to errors on the data actually chosen to go into the fit. It would be easy to illustrate similar

types of discrepancy comparing to other alternative sets of partons—in particular, due to the

absence of the Tevatron jets in the fits, many of the parton sets in [1]–[7] have rather smaller

gluons at large x, and would have different predictions for various quantities sensitive to the

high-x gluon.

8.3 Comparison of predictions for αS(M2
Z)

We also find a large variation in the values of αS(M2
Z) extracted from the fits of the differ-

ent collaborations: CTEQ6 [5], ZEUS [7], MRST2001 [9], H1 [6], Alekhin [3] and Giele et al.

(GKK) [2]. The resulting values of αS(M2
Z) are listed in Table 2, together with the determi-

nation of this work (MRST2002), in order of decreasing tolerance (
√

∆χ2), which is reflected

in the size of the corresponding experimental error. Not all are presented as determinations

of αS(M2
Z), but all are extracted using the same criteria as for the uncertainty on partons in

the respective fit, and hence should be as reliable. Clearly there is a very large variation, with

some very low values. The uncertainties due to experimental errors are determined in different
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Group variation αS(M2
Z)

of χ2

CTEQ6 ∆χ2 = 100 0.1165 ± 0.0065(exp)

ZEUS ∆χ2
eff = 50 0.1166 ± 0.0049(exp) ± 0.0018(model) ±0.004(theory)

MRST02 ∆χ2 = 20 0.1195 ± 0.002(exp) ± 0.003(theory)

MRST01 ∆χ2 = 20 0.1190 ± 0.002(exp) ± 0.003(theory)

H1 ∆χ2 = 1 0.115 ± 0.0017(exp) +0.0009
−0.0005 (model) ±0.005(theory)

Alekhin ∆χ2 = 1 0.1171 ± 0.0015(exp) ± 0.0033(theory)

GKK ∆χ2
eff = 1 0.112 ± 0.001(exp)

Table 2: Values of αS(M2
Z) and its error from different NLO QCD fits.

fashions in each case, and a summary can be found in [44]. We use ∆χ2
eff for the ZEUS determi-

nation [7], because they use the offset method for determining uncertainties which for ∆χ2 = 1

gives a larger uncertainty than the more common Hessian method. ZEUS estimate that this

is equivalent to ∆χ2 ≈ 50 if they were to use the same treatment of errors as CTEQ. We also

use ∆χ2
eff for the GKK value [2], because the uncertainties are obtained using confidence limits,

but the error quoted corresponds to the one sigma usually associated with ∆χ2 = 1.

The model errors incorporate such effects as the heavy quark prescription and masses,

parameterizations, changes in the starting scale of evolution etc. The theory error is often

determined by variation of renormalization and factorization scales, though MRST use an

estimate appealing to current knowledge of NNLO and resummations, which we feel is more

reliable. Since each fit is centered on NLO QCD with scales equal to Q2, the “theory errors”

are very strongly correlated, and cannot therefore be responsible for the differences. These

discrepancies are undoubtedly due to the assumptions going into the fits, mainly on which data

sets are included and which cuts on Q2 and W 2 are used.

MRST, who obtain the largest value of αS(M2
Z), use the widest range of data sets and also

the least conservative cuts.9 CTEQ use only a slightly smaller number of data sets but also

cut data below Q2 = 4 GeV2, as described previously. They also use a definition of the NLO

coupling which truncates the solution of the renormalization group equation, whereas most

9The slightly different treatment in this work (MRST2002) leads to a marginal raising of αS(M2

Z
) as compared

to MRST2001 [9], as seen in Table 2. We still use ∆χ2 = 20 for our one-sigma uncertainty, since if ∆χ2 = 50

corresponds to 90% confidence level, or 1.65 sigma, simple scaling implies that one sigma corresponds to ∆χ2 =

50/(1.65)2, i.e. ∆χ2 = 20 to a good approximation.
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other groups use the full solution of the NLO equation. Both approaches are equally correct,

but the truncation of the solution leads to a slightly higher value of αS(Q2) at scales below

M2
Z , for the same value of αS(M2

Z), than the other method, and thus tends to yield a lower

αS(M2
Z). CTEQ also have a very conservative estimate of the error, though it is meant to be

somewhat more than a one-sigma error. ZEUS and Alekhin use a similar selection of data sets,

i.e., HERA DIS data (only ZEUS data in the former case) and a number of fixed target DIS

data sets. Hence, it is unsurprising that they obtain similar central values of αS(M2
Z), with

respective errors which are easily explained by their choices of ∆χ2. H1 and GKK both use a

small number of sets of data: the former collaboration uses H1 DIS data [6, 10] and BCDMS

fixed-target proton DIS data [22], while GKK use older H1 DIS data [45] together with BCDMS

and E665 [26] fixed-target proton DIS data. Both determinations are heavily influenced by the

BCDMS proton data set which prefers rather small10 αS(M2
Z), and this feeds into the final

values. Also, both are strict in their statistical interpretation, obtaining small uncertainties,

even with relatively small data samples. Finally we note that only CTEQ and MRST include

the Tevatron jet data in their analyses. This is relevant because of the αS–gluon correlation.

8.4 Final comment

From the discussion of the previous two subsections, it is clear that different ideas about the

best way to perform a NLO fit can lead to a wide variation in both the central values and

the errors of αS(M2
Z) as well as in predictions for physical quantities such as σW and σH . The

fact that the various ‘NLO’ fits can yield such different outputs is disturbing, and is indicative

of the uncertainty arising from theoretical assumptions. Indeed, we have always believed that

‘theory’, rather than experiment, will provide the dominant source of error [44]. We have

already produced approximate NNLO parton distributions and predictions [47] (based on the

approximate splitting functions [48] obtained from the known NNLO moments [49]), and find,

for example, that the NNLO W cross-section at the Tevatron is 4% higher than at NLO, and

believe that this result is reliable. This change is somewhat larger than the uncertainty due to

experimental errors shown in Fig. 9. Moreover, W production is likely to be subject to smaller

theoretical uncertainty than many other observables—particularly those directly related to the

gluon. Our estimates for the uncertainty in FL(x, Q2) at small x are 10% or more even at

Q2 = 10, 000 GeV2, and significantly larger at lower Q2, for example. Hence, an understanding

of theoretical uncertainties is clearly a priority at present, and a preliminary attempt at this

will be the subject of a future publication [50].
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A. Rétey and J.A.M. Vermaseren, Nucl. Phys. B604 (2001) 281.

[50] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, in preparation.

25



Uncertainty of up valence quark from Hessian method
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Figure 1: The uncertainty on uV (x, Q2) at Q2 = 5 GeV2 and 100 GeV2 obtained using the

Hessian approach with ∆χ2 = 50. Also shown is the CTEQ6M distribution. The uncertainties

are shown relative to the MRST2001 set of partons [9]; the label C is explained in footnote 5.
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Uncertainty of down valence quark from Hessian method
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Figure 2: The uncertainty on dV (x, Q2) at Q2 = 2 GeV2 and 100 GeV2 obtained using the

Hessian approach with ∆χ2 = 50. Also shown is the CTEQ6M distribution. The uncertainties

are shown relative to the MRST2001 set of partons [9]; the label C is explained in footnote 5.
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Uncertainty of gluon from Hessian method

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

10
-4

10
-3

10
-2

10
-1

1

Ratio of xg(x,Q2)/xg(x,Q2,MRST2001C) at Q2=5 GeV2

x

Hessian uncertainty

CTEQ6M

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

10
-4

10
-3

10
-2

10
-1

1

Ratio of xg(x,Q2)/xg(x,Q2,MRST2001C) at Q2=100 GeV2

x

Figure 3: The uncertainty on g(x, Q2) at Q2 = 5 GeV2 and 100 GeV2 obtained using the

Hessian approach with ∆χ2 = 50. Also shown is the CTEQ6M distribution. The uncertainties

are shown relative to the MRST2001 set of partons [9]; the label C is explained in footnote 5.
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Uncertainty of gluon from Hessian method
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Figure 4: The uncertainty on g(x, Q2) at Q2 = 2 GeV2 obtained using the Hessian approach

with ∆χ2 = 50. Also shown is the CTEQ6M distribution.
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Figure 5: ∆χ2 = 50, 100, . . . contours, where ∆χ2 is the increase in χ2 from the global

MRST2001 minimum, obtained by performing new global fits with F CC
2 (e±p) fixed at val-

ues in the neighbourhood of their value in unconstrained MRST2001 fit. The ∆χ2 = 50

contour is taken to represent the errors on F CC
2 (e±p) (arising from the experimental errors on

the data used in the global fit). The extrema sets of partons (T,U,. . .) are discussed in the

text. The dashed contours are obtained if αS(M2
Z) is allowed to vary. The superimposed solid

∆χ2 = 50, 100 contours are obtained if αS(M2
Z) is fixed at 0.119.
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Uncertainty in u quark distribution (αs fixed)
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Figure 6: The u and d quark distributions (at Q2 = 10 and 104 GeV2) of the extrema fits which

lie on the ∆χ2 = 50 contour of Fig. 5 for fixed αS(M2
Z) = 0.119.
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Figure 7: Contours with ∆χ2 = 50, 100 . . . obtained by performing global fits with the values

of σW and σH , at the LHC energy, fixed in the neighbourhood of their values predicted by the

unconstrained MRST2001 fit. The ∆χ2 = 50 contour is taken to represent the errors on σW

and σH (arising from the experimental errors on the data used in the global fit). The extrema

sets of partons (A,B. . .) are discussed in the text. The dashed contours are obtained if αS(M2
Z)

is allowed to vary. The superimposed solid ∆χ2 = 50, 100 contours are obtained if αS(M2
Z) is

fixed at 0.119.
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Uncertainty in u quark distribution (αs fixed)

0.9

0.95

1

1.05

1.1

10
-4

10
-3

10
-2

10
-1

x

Ratio MRST(LHCA*,B*,C*,D*)/MRST2001
for u quark at Q2 = 10 GeV2

A*

B*

C*

D*

0.9

0.95

1

1.05

1.1

10
-4

10
-3

10
-2

10
-1

x

Ratio MRST(LHCA*,B*,C*,D*)/MRST2001
for u quark at Q2 = 104 GeV2

Uncertainty in gluon distribution (αs fixed)

0.8

0.9

1

1.1

1.2

10
-4

10
-3

10
-2

10
-1

x

Ratio MRST(LHCA*,B*,C*,D* )/MRST2001
for gluon at Q2 = 10 GeV2

A*

B*

C*

D*

0.8

0.9

1

1.1

1.2

10
-4

10
-3

10
-2

10
-1

x

Ratio MRST(LHCA*,B*,C*,D*)/MRST2001
for gluon at Q2 = 104 GeV2

Figure 8: The up quark and gluon distributions at Q2 = 10 and 104 GeV2 in the extrema global

fits on the ∆χ2 = 50 contour of the σW,H(LHC) plot of Fig. 7 for αS(M2
Z) fixed at 0.119.

33



-10

-5

0

5

10

-4 -3 -2 -1 0 1 2 3 4
Per cent change in W cross section

χ2 increase in global analysis as the
W and H cross sections are varied at the TEVATRON

50

100

150

200
250

•P

•Q

• R

•
S

Pe
r 

ce
nt

 c
ha

ng
e 

in
 H

 c
ro

ss
 s

ec
tio

n

+

50*

100*

•P*

•Q*

• R*

•
S*

Figure 9: As for Fig. 7, but for the Tevatron energy of
√

s = 1.8 TeV.
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Uncertainty in u quark distribution (αs fixed)
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Figure 10: The up quark and gluon distributions at Q2 = 10 and 104 GeV2 found in the extrema

global fits on the ∆χ2 = 50 contour of the σW,H(Tevatron) plot of Fig. 9 with αS(M2
Z) fixed at

0.119.
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Uncertainty in u quark distribution (αs free)
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Uncertainty in gluon distribution (αs free)
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Figure 11: As for Fig. 10 but with αS(M2
Z) allowed to vary.
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Variation of σ(W-)/σ(W+) about MRST2001 value of 0.749
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Figure 12: The variation of χ2 obtained by performing global fits with σ(W−)/σ(W+) fixed at

different values in the neighbourhood of the value obtained in the unconstrained MRST2001

fit. For ∆χ2 = 50 we see that the uncertainty in the ratio is ±1.3%.

37



-12.5

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

12.5

-12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5

Per cent change in N=2 moment

χ2 increase in global analysis as the N=2 and
N=3 moments of u-d at Q2= 4 GeV2are varied

50

100

150

200
250

•G

•HPe
r 

ce
nt

 c
ha

ng
e 

in
 N

=
3 

m
om

en
t

+

50*

100*

•G*

•H*

Figure 13: The ∆χ2 contours obtained by performing global fits with the values of the N = 2

and N = 3 moments of the u–d distribution fixed in the neighbourhood of their values predicted

by the MRST2001 global fit. The dashed and solid curves correspond to fits with αS(M2
Z)

varying and fixed respectively.
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Figure 14: The CTEQ6 [5] and MRST2002 gluon compared to MRST2001 [9] gluon at Q2 = 10

and 104 GeV2.
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Figure 15: The CTEQ6 [5] and MRST2002 predictions of σW , σH at the LHC and Tevatron

energies, shown on the ∆χ2 contour plots centered on the MRST2001 partons [9]. The ∆χ2

contours are taken from Figs. 7 and 9 respectively, for the case in which αS(M2
Z) is a free

parameter. The inner contour with ∆χ2 = 50 is taken to represent the error on the observables

σW and σH arising from the experimental errors of the data that are used in the global fit.
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