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ABSTRACT

A hybrid global-local optimization technique for the de-
sign of antennas is presented. It consists of the subse-
quent application of a Genetic Algorithm (GA) that em-
ploys coarse models in the simulations and a space map-
ping (SM) that refines the solution found in the previous
stage. The technique is particularly suited to optimiza-
tion problems for which long computational times are re-
quired to achieve accurate solutions.

Key words: Optimization methods; genetic algorithms;
space mapping; antenna arrays.

1. INTRODUCTION

The application of genetic algorithms (GAs) as optimiza-
tion tools for the design of antennas has been an active
field of research in the past decade (Rahmat-Samii &
Michielssen 1999). The main reasons for this interest
are related to their robustness, enabling the solution of
optimization problems for which local techniques of op-
timization are not effective, as well as their versatility,
permitting the successful use of the same schemes to dif-
ferent problems (Haupt 1995).

There are, however, inherent restrictions to the applicabil-
ity of the GAs. As a consequence of their structure, the
problems, for which high computational times are needed
to accurately simulate each possible solution, remain yet
excessively costly. To overcome this problem, several ef-
forts have been devoted to find more efficient optimiza-
tion schemes, resulting not only in improved versions
of the genetic algorithms, e.g. micro-genetic algorithms
(µGA) (Krishnakumar 1989) and hybrid taguchi genetic
algorithms (Tsai et al. 2004), but also in new global tech-
niques of optimization derived from different philoso-
phies, e.g. particle swarm optimizations (Kennedy &
Eberhart 2001) and ant colony optimizations (Coleman
et al. 2004). These improvements, along with the increas-

ing capability of computers and the development of paral-
lel codes (Levine 1995), have led to satisfactory solutions
for more complex problems. Moreover, in problems for
which the accuracy of the optimized solution is not crit-
ical, a usual procedure for decreasing the total computa-
tional time is to reduce the computational burden of the
models by, for example, using a coarse meshing of the
computational grid in simulators based on finite element
methods (Mohammed 1999) or decreasing the number
of basis functions in codes applying the method of mo-
ments (Fernández-Pantoja et al. 2000). Unfortunately, an
estimation of the error introduced by these approaches is
often difficult to make.

In this communication, an additional stage is introduced
in the optimization procedure to assure the accuracy of
the final result. This additional step, based on the space-
mapping (SM) technique (Bandler et al. 2004), allows
GA operators to employ coarse models in the simulations
to find an approximate solution of the problem. Once at-
tained, SM provides an accurate solution of the problem
with a relatively low computational cost. SM techniques,
in conjunction with different local optimization prob-
lems, have previously proven effective for solving dif-
ferent optimization problems in electromagnetics (Bakr
2000), (Bandler et al. 1995).

As an example of optimization the hybrid algorithm GA-
SM is used to select the lengths and feeding points of
an array of 3x3 patch antennas on a finite ground plane.
Results and graphs of this particular case will be shown
on the poster presentation of this communication.

2. HYBRID GA-SM OPTIMIZATION ALGO-
RITHM

A flowchart of the algorithm, presented in Figure 1, con-
sists basically of two different strategies applied consec-
utively. First, a GA optimizer offers, by means of repet-
itive, fast computer simulations of possible solutions, a
low-accuracy optimal resolution of the problem. This in-
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termediate result is referred to as a coarse optimal solu-
tion. Second, an accurate simulation of the coarse op-
timal solution is performed to verify whether the coarse
solution is acceptable to provide a final solution to the
problem. If this accurate analysis shows unsatisfactory
characteristics, i.e., displacements of the resonance fre-
quencies or increased levels of input reflection coeffi-
cients, a subsequent stage based on SM is initiated. In
this stage, a local optimizer using both coarse and fine
models is employed to produce an accurate solution of
the problem, denoted by the fine optimal solution. This
solution resembles the coarse solution offered by GA in
those parameters chosen to be the objectives of the opti-
mization. Consequently, the designer must define the pa-
rameters that vary in the optimization process, denoted by
x̄c and x̄f , and the characteristics (basis functions, preci-
sion of integrals, etc.) of both coarse and fine models.
The correct choices at this point will be essential for the
success of the optimization. The coarse model should be
as fast as possible, but keeping a certain similarity be-
tween its response Rc(x̄c) and the response Rf (x̄f ) of-
fered by the fine model. Otherwise, the SM stage will not
work properly. Once selected, the GA optimizer provides
the optimal coarse solution, denoted by x̄∗c , by means of
applying genetic operators only over coarse simulations.
Once determined that the deviation of the response cal-
culated by an accurate simulation Rf (x̄∗c) of the optimal
coarse solution is higher than accepted, the SM algorithm
seeks for a mapping P̃ between the fine and coarse mod-
els x̄c = P̃ (x̄f ), so that Rf (x̄f ) ≈ Rc(x̄c). To determine
P̃ , an iterative local optimization is performed. The key
steps in the SM algorithm are the parameter-extraction
phase, which ascertains the coarse model that better fits
a certain fine model, the update-mapping level, which al-
ters the estimate of P̃ using a Broyden equation (Bandler
et al. 1995), and the invert-mapping level, which deter-
mines the fine model for the next iteration. If the coarse
and fine models are properly chosen, this iterative pro-
cess converges at the fine optimal solution x̄∗f when the
responses Rf (x̄f ) and Rc(x̄c) are similar up to a previ-
ously fixed level of precision. More details on the SM
can be found in (Bandler et al. 2004).

3. EXAMPLE OF OPTIMIZATION

To test the adequacy of the method, the determination
of proper lengths and feeding points for an array of 3x3
patch antennas on a finite square ground plane to oper-
ate at a frequency of 4.5 GHz is proposed as an example
of optimization. Given the symmetry of the problem, as
indicated in Figure 2(a), there are a total of 12 optimiza-
tion parameters, related both to the lengths (L1, . . . , L6)
and to the distances of the feeding points from the center
of the patch (d1, . . . , d6). Fixed quantities of this exam-
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Figure 1. Flowchart of the hybrid GA-SM algorithm.
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Figure 2. Array of patch antennas on finite ground plane.



ple are the widths of the patches (W = 3 cm), the side
length of the ground plane (Lg = 12 cm), and the dis-
tance between the antennas and ground (h = 0.15 cm).
The substrate used is air.

The use of a global optimizer to solve this problem re-
quires a reliable code to simulate randomly generated de-
signs. All the results shown in this paper are derived from
the method-of-moments solution of the mixed-potential
electric-field integral equation with higher-order Legen-
dre basis functions (Jørgensen et al. 2004). Given the spe-
cific set of lengths and feeding points described above,
an accurate solution of this problem requires 6000 ba-
sis functions with an analysis time of 4 minutes per fre-
quency on a 2.2 GHz AMD Opteron processor. As the
search space consists of 1012 possible solutions to be
considered in the optimization process, the optimization
results are reached with a µGA algorithm after approxi-
mately 3000 simulations. If no parallelization is applied,
the total optimization time for this simple case could be
about nine days. The application of a coarse model of the
individuals, consisting of a decrease in both the number
of basis functions and precision of the integrals which is
described in the following section, leads to a faster result
with the cost of a displacement in the frequency spectrum
of the simulated response of some 100 MHz.

Thus, the GA-SM optimization was performed. The GA
stage, using only coarse models of the array, was con-
ducted by means of an elitist µGA algorithm (Krishnaku-
mar 1989), with a population of 5 individuals and a 80%
convergence for a replacement of the population. The GA
operators employed were a tournament selection and a
double-point crossover (Back et al. 1997). Possible solu-
tions were generated using fixed-point codification, with
a total of 12 integer digits ranging from 3 cm to 3.25 cm
for the lengths and from 0.33 cm to 0.60 cm for the dis-
tance of the feeding points to the center of the patch. The
values allowed for the patch lengths in the GA process
were established using approximate equations for the res-
onance frequency of rectangular microstrip patch anten-
nas over infinite ground plane , ranging from 4.4 GHz to
4.8 GHz, these corresponding, respectively, to 3.25 cm
and 3 cm. The fitness function F was designed to min-
imize at 4.5 GHz the maximum value of the magnitude
of the input reflection coefficient for any antenna of the
array (F = max{|S11|i}; i = 1, . . . , 6). Figure 3 shows
the magnitude of the input reflection coefficient of each
antenna element in this coarse solution, indicating differ-
ent resonance frequencies for each patch antenna, but all
of them near the desired 4.5 GHz of operation.

Nevertheless, a simulation with a fine model of the same
antenna reveals a shift in the spectrum of approximately
130 MHz (see Figure 4). For a correction of this ef-
fect, the SM stage is introduced. The fine space was
defined with only two parameters x̄f , each one to scale
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Figure 3. Input reflection coefficients based on the coarse
optimal solution.
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Figure 4. Input reflection coefficients based on an accu-
rate simulation of the coarse optimal solution.

respectively the lengths and the distances from the feed-
ing points, respectively, of the optimal coarse solution.
As pointed out in (Bakr 2000), the convergence of the
model is better achieved when several frequency points of
analysis are employed. In this case, 11 frequency points
were distributed between 4.25 GHz to 4.75 GHz. The
parameter-extraction phase was accomplished following
the aggressive space-mapping approach (Bandler et al.
1995), and taking, as a measure of the similarity between
the fine and coarse models, the mean square error of the
difference between their respective real parts of the in-
put impedance, for all the patches along the frequency
points of the analysis. Other relevant selections in this
SM stage were the stopping criteria, set to 10−4, and
the numerical estimate of the analytical Jacobian by us-
ing a forward-difference approximation. A key point to
achieve a quick convergence is to evaluate the similarity
between fine and coarse-model responses using as mea-
suring function the real part of the input impedance rather
than the magnitude of input reflection coefficient, due to
the fact that the greater smoothness of the former leads to
better forward-difference approximations. After a total
of three fine simulations and 45 coarse simulations, the
algorithm converged to the final solution. Figure 5 shows
the effective correction of the operational point to the 4.5
GHz.
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Figure 5. Input reflection coefficients based on the fine
optimal solution.

Finally, an estimation is made of the time saved by using
the GA-SM method, in contrast to the GA method using
only fine simulations. Given that the time consumption
for the fine model in this case is 6.5 times slower per
frequency than the coarse model, and that each fine or
coarse simulation made in the SM stage solved 11 fre-
quency points, the optimization was performed roughly
5.25 times faster applying this hybrid technique. Hence,
as long as the limit on the time reduction depends on the
difference between the analysis time of fine and coarse
models, the designer has to look for faster coarse mod-
els to achieve greater reductions. In any event, this pro-
cess should be carried out carefully since the SM stage
works only effectively if the response of the coarse model
is similar to that of the fine model.

4. CONCLUSION

In this communication, an efficient scheme has been pro-
posed for the optimization of antennas. This scheme con-
sists of applying an additional space-mapping technique
after a genetic-algorithm optimization, the latter employ-
ing a coarse model in the simulation of the antenna re-
sponse. The SM stage of the process improves the accu-
racy of the optimized results, and the total approach has
been demonstrated to offer advantages in terms of com-
putational cost over the single application of GA with a
fine-model simulator. Further studies will be conducted
to compare the performance of the GA-SM method with
other hybrid methods combining local optimization tech-
niques and SM.
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