83 research outputs found
Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation
Cryospheric changes in northern high latitudes are linked to significant greenhouse gas flux to the atmosphere, for example, methane that originates from organic matter decomposition in thermokarst lakes. The set of pathways that link methane production in sediments, via oxidation in the lake system, to the flux of residual methane to the atmosphere is complex and exhibits temporal and spatial variation. The isotopic signal of bacterial biomarkers (hopanoids, e.g. diploptene) in sediments has been used to identify contemporary ocean-floor methane seeps and, in the geological record, periods of enhanced methane production (e.g. the PETM). The biomarker approach could potentially be used to assess temporal changes in lake emissions through the Holocene via the sedimentary biomarker record. However, there are no data on the consistency of the signal of isotopic depletion in relation to source or on the amount of noise (unexplained variation) in biomarker values from modern lake sediments. We assessed methane oxidation as represented by the isotopic signal of biomarkers from methane oxidising bacteria (MOB) in multiple surface sediment samples in three distinct areas known to emit varying levels of methane in two shallow Alaskan thermokarst lakes. Diploptene was present and had δ13C values lower than -38g‰ in all sediments analysed, suggesting methane oxidation was widespread. However, there was considerable variation in δ13C values within each area. The most 13C-depleted diploptene was found in an area of high methane ebullition in Ace Lake (diploptene δ13C values between -68.2 and -50.1‰). In contrast, significantly higher diploptene δ13C values (between -42.9 and -38.8g‰) were found in an area of methane ebullition in Smith Lake. δ13C values of diploptene between -56.8 and -46.9g‰ were found in the centre of Smith Lake, where ebullition rates are low but diffusive methane efflux occurs. The small-scale heterogeneity of the samples may reflect patchy distribution of substrate and/or MOB within the sediments. The two ebullition areas differ in age and type of organic carbon substrate, which may affect methane production, transport, and subsequent oxidation. Given the high amount of variation in surface samples, a more extensive calibration of modern sediment properties, within and among lakes, is required before down-core records of hopanoid isotopic signatures are developed. © Author(s) 2016
A 27cal ka biomarker-based record of ecosystem changes from lacustrine sediments of the Chihuahua Desert of Mexico
Hydroclimate variation of the northwest Mexico during the late Pleistocene and Holocene is an active area of debate, with uncertainty in the nature and sources of precipitation. Previous research has inferred the influences of winter storms, summer monsoonal rain and autumn tropical cyclones. The impacts on regional and local ecosystems, however, are not well constrained. Here, we investigate the response of lacustrine and terrestrial habitats of the Santiaguillo Basin in the Chihuahua Desert (Mexico) to hydrological changes occurring since the late last glacial. Biomarkers from the sediments reflect variable input of organic matter (OM) from algal and bacterial biomass, aquatic microfauna and surrounding vegetation, revealing distinct stages of ecosystem adaption over the last 27 cal ka. Based on previously published and new data, we show that a perennial productive lake was present during the late glacial and it persisted until 17.5 cal ka BP. Coinciding with Heinrich event 1, OM supply from deteriorating wetland soils may have been caused by early dry conditions. Further phases of increasing aridity and a shrinking water body drove changing OM quality and biomarker composition during the early and mid-Holocene. A pronounced shift in biomarker distributions at 4 cal ka BP suggests that the supply of plant litter from resinous trees and grasses increased, likely reflecting the establishment of modern vegetation. Our results illustrate the potential of biomarker applications in the area, adding to the evidence of hydroclimate variability and enabling reconstructions of local ecosystem dynamics
Shale-gas potential of the Mid-Carboniferous Bowland-Hodder Unit in the Cleveland Basin (Yorkshire), Central Britain
The shale-gas potential of mid-Carboniferous mudrocks in the Bowland-Hodder unit in the Cleveland Basin (Yorkshire, northern England) was investigated through the analysis of a cored section from the uppermost part of the unit in the Malton-4 well using a multidisciplinary approach. Black shales are interbedded with bioturbated and bedded sandstones, representing basinal-offshore to prodelta – delta-front lithofacies. The total organic carbon (TOC) content of the shales ranges from 0.37 to 2.45 wt %. Rock-Eval pyrolysis data indicate that the organic matter is mainly composed of Type III kerogen with an admixture of Type II kerogen. Tmax (436–454°C), 20S/(20S+20R) C29 sterane ratios, and vitrinite reflectance values indicate that organic matter is in the mid- to late- mature (oil) stage with respect to hydrocarbon generation. Sedimentological and geochemical redox proxies suggest that the black shales were deposited in periodically oxic-dysoxic and anoxic bottom waters with episodic oxic conditions, explaining the relatively low TOC values. The Rock-Eval parameters indicate that the analysed mudrocks have a limited shale-gas potential. However, burial and thermal history modelling, and VRr data from other wells in the region, indicate that where they are more deeply-buried, the Bowland-Hodder shales will be within the gas window with VRr > 1.1 % at depths in excess of 2000 m. Therefore although no direct evidence for a high shale-gas potential in the Cleveland Basin has been found, this cannot be precluded at greater depths especially if deeper horizons are more organic rich
Biogeochemistry of intertidal microbial mats from Qatar: new insights from organic matter characterisation
Understanding early organic matter (OM) alteration and preservation in marine carbonate-evaporite systems could improve understanding of carbon cycling and hydrocarbon source rock prediction in such environments. It is possible that organic-rich microbial mats are important contributors to preserved hydrocarbons and, to explore this, we examined changes in lipid composition in such a mat from a mesohaline intertidal lagoon, eastern Qatar. The mat reaches > 5 cm thickness over a carbonate mud substrate, rich in seagrass, gastropods and other small bioclasts. Clear lamination, with distinct downward colour changes from green to pink to brown, reflects different microbial mat communities. The layers contain spheroids of probable dolomite, the precipitation of which was plausibly bacterially-mediated. Lipids [n-alkanes, fatty acids (FAs), hopanoids, isoprenoid hydrocarbons, dialkyl glycerol diethers (DAGEs), and isoprenoid (0–4) and branched (Ia–IIIa) GDGTs] reflected the diverse mat-building phototrophic, heterotrophic and chemoorganotrophic microorganisms, as well as some likely allochthonous material (i.e. steroids, n-alkanols, high molecular weight n-alkanes). The lipids clearly documented the change in microbial community, with phytene(s) being the predominant hydrocarbon in the phototrophic surface layer. O2 and pH dropped significantly 0.2 cm below the mat surface, coincident with the predominance of Deltaproteobacteria and increased concentrations of archaeal and bacterial glycerol dialkyl glycerol tetraether lipids and C15/C16 and C16/C17 dialkyl glycerol ether lipids in the deeper layers. Archaeol, likely of methanogen origin, was most abundant in the deepest layer. Allochthonous inputs occurred throughout the mat, including abundant steroids, especially dinosterol and dinostanol, possibly related to periodic algal (dinoflagellate) blooms in the Arabian Gulf. Both n-alkanes and n-alkanols appeared to be derived from seagrass. OM content decreased in the deepest mat; this suggests an overall low preservation potential of OM in intertidal mesohaline-hypersaline mats of the Arabian Gulf, which in turn suggests that these are not the major source of hydrocarbons in microbially-dominated carbonate-evaporite systems
Biogeochemistry of intertidal microbial mats from Qatar: new insights from organic matter characterisation
Understanding early organic matter (OM) alteration and preservation in marine carbonate-evaporite systems could improve understanding of carbon cycling and hydrocarbon source rock prediction in such environments. It is possible that organic-rich microbial mats are important contributors to preserved hydrocarbons and, to explore this, we examined changes in lipid composition in such a mat from a mesohaline intertidal lagoon, eastern Qatar. The mat reaches > 5 cm thickness over a carbonate mud substrate, rich in seagrass, gastropods and other small bioclasts. Clear lamination, with distinct downward colour changes from green to pink to brown, reflects different microbial mat communities. The layers contain spheroids of probable dolomite, the precipitation of which was plausibly bacterially-mediated. Lipids [n-alkanes, fatty acids (FAs), hopanoids, isoprenoid hydrocarbons, dialkyl glycerol diethers (DAGEs), and isoprenoid (0–4) and branched (Ia–IIIa) GDGTs] reflected the diverse mat-building phototrophic, heterotrophic and chemoorganotrophic microorganisms, as well as some likely allochthonous material (i.e. steroids, n-alkanols, high molecular weight n-alkanes). The lipids clearly documented the change in microbial community, with phytene(s) being the predominant hydrocarbon in the phototrophic surface layer. O2 and pH dropped significantly 0.2 cm below the mat surface, coincident with the predominance of Deltaproteobacteria and increased concentrations of archaeal and bacterial glycerol dialkyl glycerol tetraether lipids and C15/C16 and C16/C17 dialkyl glycerol ether lipids in the deeper layers. Archaeol, likely of methanogen origin, was most abundant in the deepest layer. Allochthonous inputs occurred throughout the mat, including abundant steroids, especially dinosterol and dinostanol, possibly related to periodic algal (dinoflagellate) blooms in the Arabian Gulf. Both n-alkanes and n-alkanols appeared to be derived from seagrass. OM content decreased in the deepest mat; this suggests an overall low preservation potential of OM in intertidal mesohaline-hypersaline mats of the Arabian Gulf, which in turn suggests that these are not the major source of hydrocarbons in microbially-dominated carbonate-evaporite systems
An interlaboratory study of TEX86 and BIT analysis of sediments, extracts and standard mixtures.
Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3-4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the "true" (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values
A New Omomyid Primate from the Earliest Eocene of Southern England: First Phase of Microchoerine Evolution
Hooker, J.J. 2012. A new omomyid primate from the earliest Eocene of southern England: First phase of microchoerin
Carbon isotopic compositions of microbial lipids as tracers of carbon cycling in diverse settings
Recent work has highlighted the ubiquity of bacteria and archaea and continues to affirm their significance in diverse biogeochemical processes. The 13C values and distributions of diagnostic lipids derived from such microorganisms can provide insights into prokaryotic processes in modern settings and are one of the few means by which past prokaryotic processes in depositional settings can be elucidated. Here we present a brief review of prokaryotic lipids commonly observed in sediments and the controls on their carbon isotopic compositions. We then present two case studiesone of Mediterranean cold seeps at which anaerobic oxidation of methane occurs and one of a Holocene peat deposit in which a variety of aerobic and anaerobic microorganisms govern the degradation of organic matter. These two studies illustrate the potential utility of compound-specific carbon isotope analyses to deconvolute pathways of carbon flow in microbial communities
- …