2,701 research outputs found

    Weak Transitions in A=6 and 7 Nuclei

    Get PDF
    The 6^6He beta decay and 7^7Be electron capture processes are studied using variational Monte Carlo wave functions, derived from a realistic Hamiltonian consisting of the Argonne v18v_{18} two-nucleon and Urbana-IX three-nucleon interactions. The model for the nuclear weak axial current includes one- and two-body operators with the strength of the leading two-body term--associated with Δ\Delta-isobar excitation of the nucleon--adjusted to reproduce the Gamow-Teller matrix element in tritium β\beta-decay. The measured half-life of 6^6. He is under-predicted by theory by \simeq 8%, while that of 7^7Be for decay into the ground and first excited states of 7^7Li is over-predicted by \simeq 9%. However, the experimentally known branching ratio for these latter processes is in good agreement with the calculated value. Two-body axial current contributions lead to a \simeq 1.7% (4.4%) increase in the value of the Gamow-Teller matrix element of 6^6He (7^7Be), obtained with one-body currents only, and slightly worsen (appreciably improve) the agreement between the calculated and measured half-life. Corrections due to retardation effects associated with the finite lepton momentum transfers involved in the decays, as well as contributions of suppressed transitions induced by the weak vector charge and axial current operators, have also been calculated and found to be negligible.Comment: 23 pages 8 tables. submitted to Phys. Rev.

    Modeling the evolution of chorus waves into plasmaspheric hiss

    Get PDF
    Plasmaspheric hiss (PH) is a band-limited, incoherent whistler mode emission found predominantly in the plasmasphere or high-density plasma regions in the near-Earth space environment. Since its discovery in the late 1960s, PH has been recognized as playing an important role in shaping the structure and dynamics of the Earth's electron radiation belts and creating the slot region that separates the inner and outer belts. However, the origin of PH has been a topic of intense debate for over four decades. Here we present a model for the origin of PH that involves the evolution of chorus waves into the PH spectrum. We perform extensive ray tracing using the HOTRAY code and calculate Landau damping using newly developed suprathermal flux maps from THEMIS observations, that are L and magnetic local time dependent, for both inside and outside the plasmasphere. Our results show remarkable consistency with the observed statistical characteristics of hiss, including the day/night asymmetry in wave power, frequency spectrum, geomagnetic control of PH, quasi-parallel equatorial wave normal angles, and confinement within the plasmasphere. Our model also reproduces ancillary features such as exohiss and extremely low frequency (ELF) hiss and might be related to a previously reported phenomenon called lower hybrid resonance duct trapping in the ionosphere. A detailed analysis of ray morphologies shows a separation into four distinct groups, which correspond to (1) rays that are trapped at the plasmapause, (2) PH rays, (3) ELF hiss rays, and (4) rays that represent the bulk of the chorus ray power

    Effect of pressure and temperature on interfacial tension of poly lactic acid melt in supercritical carbon dioxide

    Get PDF
    © 2015. This manuscript version of Effect of Pressure and Temperature on Interfacial Tension of Poly lactic acid melt in supercritical carbon dioxide is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the accepted manuscript version of a published article. Published by Elsevier in the journal "Thermochimica Acta" volume 609, http://dx.doi.org/10.1016/j.tca.2015.04.005The interfacial tension of poly lactic acid (PLA) melt is measured in supercritical carbon dioxide (CO2) at the temperature range of 143 °C to 168 °C and CO2 pressures up to 2000 psi, using Axisymmetric Drop Shape Analysis Profile (ADSA-P). The results show a decrease in interfacial tension with increasing temperature and pressure. However, the interfacial tension dependency on temperature at high pressures decreases because of a reduction in CO2 solubility at high temperatures. The relationship between the interfacial tension and the density-difference of polymer-supercritical CO2 mixtures is also examined by the generalized Macleod equation. Moreover, the range of stability for the melted drop, in interfacial tension measurements, is obtained by dimensionless Bond number. The results indicate the validity of the measurements for Bond number between 0.36 and 0.48.Natural Sciences and Engineering Research Council (NSERC) Network for Innovative Plastic Materials and Manufacturing Processes (NIPMMP) Canada Research Chairs (CRC

    Modeling the impact of surveillance activities combined with physical distancing interventions on COVID-19 epidemics at a local level

    Get PDF
    Physical distancing and contact tracing are two key components in controlling the COVID- 19 epidemics. Understanding their interaction at local level is important for policymakers. We propose a flexible modeling framework to assess the effect of combining contact tracing with different physical distancing strategies. Using scenario tree analyses, we compute the probability of COVID-19 detection using passive surveillance, with and without contact tracing, in metropolitan Barcelona. The estimates of detection probability and the frequency of daily social contacts are fitted into an age-structured susceptible- exposed-infectious-recovered compartmental model to simulate the epidemics consid- ering different physical distancing scenarios over a period of 26 weeks. With the original Wuhan strain, the probability of detecting an infected individual without implementing physical distancing would have been 0.465, 0.515, 0.617, and 0.665 in designated age groups (0e14, 15e49, 50e64, and >65), respectively. As the physical distancing measures were reinforced and the disease circulation decreased, the interaction between the two interventions resulted in a reduction of the detection probabilities; however, despite this reduction, active contact tracing and isolation remained an effective supplement to physical distancing. If we relied solely on passive surveillance for diagnosing COVID-19, the model required a minimal 50% (95% credible interval, 39e69%) reduction of daily social contacts to keep the infected population under 5%, as compared to the 36% (95% credible interval, 22e56%) reduction with contact tracing systems. The simulation with the B.1.1.7 and B.1.167.2 strains shows similar results. Our simulations showed that a functioning contact tracing program would reduce the need for physical distancing and mitigate the COVID-19 epidemics.info:eu-repo/semantics/publishedVersio

    Sequential pivotal mechanisms for public project problems

    Get PDF
    It is well-known that for several natural decision problems no budget balanced Groves mechanisms exist. This has motivated recent research on designing variants of feasible Groves mechanisms (termed as `redistribution of VCG (Vickrey-Clarke-Groves) payments') that generate reduced deficit. With this in mind, we study sequential mechanisms and consider optimal strategies that could reduce the deficit resulting under the simultaneous mechanism. We show that such strategies exist for the sequential pivotal mechanism of the well-known public project problem. We also exhibit an optimal strategy with the property that a maximal social welfare is generated when each player follows it. Finally, we show that these strategies can be achieved by an implementation in Nash equilibrium.Comment: 19 pages. The version without the appendix will appear in the Proc. 2nd International Symposium on Algorithmic Game Theory, 200

    Inapproximability of maximal strip recovery

    Get PDF
    In comparative genomic, the first step of sequence analysis is usually to decompose two or more genomes into syntenic blocks that are segments of homologous chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps need to be removed first. Maximal Strip Recovery (MSR) is an optimization problem proposed by Zheng, Zhu, and Sankoff for reliably recovering syntenic blocks from genomic maps in the midst of noise and ambiguities. Given dd genomic maps as sequences of gene markers, the objective of \msr{d} is to find dd subsequences, one subsequence of each genomic map, such that the total length of syntenic blocks in these subsequences is maximized. For any constant d2d \ge 2, a polynomial-time 2d-approximation for \msr{d} was previously known. In this paper, we show that for any d2d \ge 2, \msr{d} is APX-hard, even for the most basic version of the problem in which all gene markers are distinct and appear in positive orientation in each genomic map. Moreover, we provide the first explicit lower bounds on approximating \msr{d} for all d2d \ge 2. In particular, we show that \msr{d} is NP-hard to approximate within Ω(d/logd)\Omega(d/\log d). From the other direction, we show that the previous 2d-approximation for \msr{d} can be optimized into a polynomial-time algorithm even if dd is not a constant but is part of the input. We then extend our inapproximability results to several related problems including \cmsr{d}, \gapmsr{\delta}{d}, and \gapcmsr{\delta}{d}.Comment: A preliminary version of this paper appeared in two parts in the Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC 2009) and the Proceedings of the 4th International Frontiers of Algorithmics Workshop (FAW 2010

    Censored Glauber Dynamics for the mean field Ising Model

    Full text link
    We study Glauber dynamics for the Ising model on the complete graph on nn vertices, known as the Curie-Weiss Model. It is well known that at high temperature (β<1\beta < 1) the mixing time is Θ(nlogn)\Theta(n\log n), whereas at low temperature (β>1\beta > 1) it is exp(Θ(n))\exp(\Theta(n)). Recently, Levin, Luczak and Peres considered a censored version of this dynamics, which is restricted to non-negative magnetization. They proved that for fixed β>1\beta > 1, the mixing-time of this model is Θ(nlogn)\Theta(n\log n), analogous to the high-temperature regime of the original dynamics. Furthermore, they showed \emph{cutoff} for the original dynamics for fixed β<1\beta<1. The question whether the censored dynamics also exhibits cutoff remained unsettled. In a companion paper, we extended the results of Levin et al. into a complete characterization of the mixing-time for the Currie-Weiss model. Namely, we found a scaling window of order 1/n1/\sqrt{n} around the critical temperature βc=1\beta_c=1, beyond which there is cutoff at high temperature. However, determining the behavior of the censored dynamics outside this critical window seemed significantly more challenging. In this work we answer the above question in the affirmative, and establish the cutoff point and its window for the censored dynamics beyond the critical window, thus completing its analogy to the original dynamics at high temperature. Namely, if β=1+δ\beta = 1 + \delta for some δ>0\delta > 0 with δ2n\delta^2 n \to \infty, then the mixing-time has order (n/δ)log(δ2n)(n / \delta)\log(\delta^2 n). The cutoff constant is (1/2+[2(ζ2β/δ1)]1)(1/2+[2(\zeta^2 \beta / \delta - 1)]^{-1}), where ζ\zeta is the unique positive root of g(x)=tanh(βx)xg(x)=\tanh(\beta x)-x, and the cutoff window has order n/δn / \delta.Comment: 55 pages, 4 figure

    Fractional Exclusion Statistics and Anyons

    Full text link
    Do anyons, dynamically realized by the field theoretic Chern-Simons construction, obey fractional exclusion statistics? We find that they do if the statistical interaction between anyons and anti-anyons is taken into account. For this anyon model, we show perturbatively that the exchange statistical parameter of anyons is equal to the exclusion statistical parameter. We obtain the same result by applying the relation between the exclusion statistical parameter and the second virial coefficient in the non-relativistic limit.Comment: 9 pages, latex, IFT-498-UN

    On the effects of using CO2 and F2 lasers to modify the wettability of a polymeric biomaterial.

    Get PDF
    Enhancement of the surface properties of a material by means of laser radiation has been amply demonstrated previously. In this work a comparative study for the surface modification of nylon 6,6 has been conducted in order to vary the wettability characteristics using CO2 and excimer lasers. This was done by producing 50 μm spaced (with depths between 1 and 10 μm) trench-like patterns using various laser parameters such as varying the laser power for the CO2 laser and number of pulses for the excimer laser. Topographical changes were analysed using optical microscopy and white light interferometry which indicated that both laser systems can be implemented for modifying the topography of nylon 6,6. Variations in the surface chemistry were evaluated using energy-dispersive X-ray spectroscopy and x-ray photoelectron spectroscopy analysis and showed that the O2 increased by up to 1.5% At. and decreased by up to 1.6% At. for the CO2 and F2 laser patterned samples, respectively. Modification of the wettability characteristics was quantified by measuring the advancing contact angle, which was found to increase in all instances for both laser systems. Emery paper roughened samples were also analysed in the same manner to determine that the topographical pattern played a major role in the wettability characteristics of nylon 6,6. From this, it is proposed that the increase in contact angle for the laser processed samples is due to a mixed intermediate state wetting regime owed to the periodic surface roughness brought about by the laser induced trench-like topographical patterns
    corecore