
Theoretical Computer Science 412 (2011) 3759–3774

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Inapproximability of maximal strip recovery✩

Minghui Jiang ∗
Department of Computer Science, Utah State University, Logan, UT 84322, USA

a r t i c l e i n f o

Article history:
Received 13 November 2010
Received in revised form 3 April 2011
Accepted 13 April 2011
Communicated by R. Giancarlo

Keywords:
Computational complexity
Bioinformatics
Sequence analysis
Genome rearrangement

a b s t r a c t

In comparative genomics, the first step of sequence analysis is usually to decompose two
ormore genomes into syntenic blocks that are segments of homologous chromosomes. For
the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps need
to be removed first. Maximal Strip Recovery (MSR) is an optimization problem proposed
by Zheng, Zhu, and Sankoff for reliably recovering syntenic blocks from genomic maps in
the midst of noise and ambiguities. Given d genomic maps as sequences of gene markers,
the objective of MSR-d is to find d subsequences, one subsequence of each genomic map,
such that the total length of syntenic blocks in these subsequences is maximized. For any
constant d ≥ 2, a polynomial-time 2d-approximation for MSR-dwas previously known. In
this paper, we show that for any d ≥ 2, MSR-d is APX-hard, even for the most basic version
of the problem in which all gene markers are distinct and appear in positive orientation in
each genomicmap.Moreover, we provide the first explicit lower bounds on approximating
MSR-d for all d ≥ 2. In particular, we show that MSR-d is NP-hard to approximate within
Ω(d/ log d). From the other direction, we show that the previous 2d-approximation for
MSR-d can be optimized into a polynomial-time algorithm even if d is not a constant but is
part of the input.We then extend our inapproximability results to several related problems
including CMSR-d, δ-gap-MSR-d, and δ-gap-CMSR-d.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In comparative genomics, the first step of sequence analysis is usually to decompose two or more genomes into syntenic
blocks that are segments of homologous chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities
in the genomic maps need to be removed first. A genomic map is a sequence of gene markers. A gene marker appears in
a genomic map in either positive or negative orientation. Given d genomic maps, Maximal Strip Recovery (MSR-d) is the
problem of finding d subsequences, one subsequence of each genomic map, such that the total length of strips of these
subsequences is maximized [27,11]. Here a strip is a maximal string of at least two markers such that either the string itself
or its signed reversal appears contiguously as a substring in each of the d subsequences in the solution. Without loss of
generality, we can assume that all markers appear in positive orientation in the first genomic map.

For example, the two genomic maps (the markers in negative orientation are underlined)

1 2 3 4 5 6 7 8 9 10 11 12
8 5 7 6 4 1 3 2 12 11 10 9

✩ This research was supported in part by NSF grant DBI-0743670. A preliminary version of this paper appeared in two parts [17,18] in the Proceedings
of the 20th International Symposium on Algorithms and Computation (ISAAC 2009) and the Proceedings of the 4th International Frontiers of Algorithmics
Workshop (FAW 2010).
∗ Tel.: +1 435 797 0347.

E-mail address:mjiang@cc.usu.edu.

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.04.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82609427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.04.021
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:mjiang@cc.usu.edu
http://dx.doi.org/10.1016/j.tcs.2011.04.021

3760 M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774

have two subsequences

1 3 6 7 8 10 11 12
8 7 6 1 3 12 11 10

of the maximum total strip length 8. The strip ⟨1, 3⟩ is positive and forward in both subsequences; the other two strips
⟨6, 7, 8⟩ and ⟨10, 11, 12⟩ are positive and forward in the first subsequence, but are negative and backward in the second
subsequence. Intuitively, the strips are syntenic blocks, and the deleted markers not in the strips are noise and ambiguities
in the genomic maps.

The problemMSR-2 was introduced by Zheng et al. [27], and was later generalized to MSR-d for any d ≥ 2 by Chen et al.
[11]. For MSR-2, Zheng et al. [27] presented a potentially exponential-time heuristic that solves a subproblem of Maximum-
Weight Clique. For MSR-d, Chen et al. [11] presented a 2d-approximation based on Bar-Yehuda et al.’s fractional local-
ratio algorithm for Maximum-Weight Independent Set in d-interval graphs [6]; the running time of this 2d-approximation
algorithm is polynomial if d is a constant.

On the complexity side, Chen et al. [11] showed that several close variants of the problem MSR-d are intractable. In
particular, they showed that (i) MSR-2 is NP-complete if duplicate markers are allowed in each genomic map, and that (ii)
MSR-3 is NP-complete even if the markers in each genomic map are distinct. The complexity of MSR-2 with no duplicates,
however, was left as an open problem.

In the biological context, a genomic mapmay contain duplicate markers as a paralogy set [27, p. 516], but such maps are
relatively rare. ThusMSR-2 without duplicates is themost useful version of MSR-d in practice. Theoretically, MSR-2 without
duplicates is the most basic and hence the most interesting version of MSR-d. Also, the previous NP-hardness proofs of both
(i) MSR-2with duplicates and (ii) MSR-3without duplicates [11] rely on the fact that amarkermay appear in a genomicmap
in either positive or negative orientation. A natural question is whether there is any version of MSR-d that remains NP-hard
even if all markers in the genomic maps are in positive orientation.

We give a precise formulation of the most basic version of the problem MSR-d as follows:

INSTANCE: Given d sequences Gi, 1 ≤ i ≤ d, where each sequence is a permutation of ⟨1, . . . , n⟩.
QUESTION: Find a subsequence G′i of each sequence Gi, 1 ≤ i ≤ d, and find a set of strips Sj, where each strip is a
sequence of length at least two over the alphabet {1, . . . n}, such that each subsequence G′i is the concatenation of
the strips Sj in some order, and the total length of the strips Sj is maximized.

Themain result of this paper is the following theorem that settles the computational complexity of themost basic version
of Maximal Strip Recovery, and moreover provides the first explicit lower bounds on approximating MSR-d for all d ≥ 2:
Theorem 1. MSR-d for any d ≥ 2 is APX-hard. Moreover,MSR-2,MSR-3,MSR-4, andMSR-d are NP-hard to approximate within
1.000431, 1.002114, 1.010661, and Ω(d/ log d), respectively, even if all markers are distinct and appear in positive orientation
in each genomic map.

Recall that for any constant d ≥ 2, MSR-d admits a polynomial-time 2d-approximation algorithm [11]. Thus MSR-d
for any constant d ≥ 2 is APX-complete. Our following theorem gives a polynomial-time 2d-approximation algorithm for
MSR-d even if the number d of genomic maps is not a constant but is part of the input:
Theorem 2. For any d ≥ 2, there is a polynomial-time 2d-approximation algorithm for MSR-d if all markers are distinct in each
genomic map. This holds even if d is not a constant but is part of the input.

Note that we have only a small gap between the upper bound of 2d in Theorem 2 and the asymptotic lower bound of
Ω(d/ log d) in Theorem 1.

Maximal Strip Recovery [27,11] is a maximization problem. Wang and Zhu [26] introduced Complement Maximal Strip
Recovery as aminimization problem. Given d genomicmaps as input, the problemCMSR-d is the same as the problemMSR-d
except that the objective is minimizing the number of deleted markers not in the strips, instead of maximizing the number
of markers in the strips. A natural question is whether a polynomial-time approximation scheme may be obtained for this
problem. Our following theorem shows that unless NP= P, CMSR-d cannot be approximated arbitrarily well:
Theorem 3. CMSR-d for any d ≥ 2 is APX-hard. Moreover, CMSR-2, CMSR-3, CMSR-4, and CMSR-d for any d ≥ 173 are NP-
hard to approximate within 1.000625, 1.0101215, 1.0202429, and 7

6 − O(log d/d), respectively, even if all markers are distinct
and appear in positive orientation in each genomic map. If the number d of genomic maps is not a constant but is part of the input,
then CMSR-d is NP-hard to approximate within any constant less than 10

√
5− 21 = 1.3606 . . ., even if all markers are distinct

and appear in positive orientation in each genomic map.
Note the similarity betweenTheorem1andTheorem3. In fact, our proof of Theorem3uses exactly the same constructions

as our proof of Theorem 1. The only difference is in the analysis of the approximation lower bounds.
Bulteau et al. [10] recently proposed a restricted variant of Maximal Strip Recovery called δ-gap-MSR, which is MSR-2

with the additional constraint that at most δ markers may be deleted between any two adjacent markers of a strip in each
genomic map. We now define δ-gap-MSR-d and δ-gap-CMSR-d as the restricted variants of the two problems MSR-d and
CMSR-d, respectively, with the additional δ-gap constraint. Bulteau et al. [10] proved that δ-gap-MSR-2 is APX-hard for any
δ ≥ 2, and is NP-hard for δ = 1.We extend our proofs of Theorems 1 and 3 to obtain the following theorem on δ-gap-MSR-d
and δ-gap-CMSR-d for any δ ≥ 2:

M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774 3761

Theorem 4. Let δ ≥ 2. Then

(1) δ-gap-MSR-d for any d ≥ 2 is APX-hard. Moreover, δ-gap-MSR-2, δ-gap-MSR-3, δ-gap-MSR-4, and δ-gap-MSR-d are NP-
hard to approximate within 1.000431, 1.002114, 1.010661, and d/2O(

√
log d), respectively, even if all markers are distinct and

appear in positive orientation in each genomic map.
(2) δ-gap-CMSR-d for any d ≥ 2 is APX-hard. Moreover, δ-gap-CMSR-2, δ-gap-CMSR-3, δ-gap-CMSR-4, and δ-gap-CMSR-d

for any d ≥ 173 are NP-hard to approximate within 1.000625, 1.0101215, 1.0202429, and 7
6 − O(log d/d), respectively,

even if all markers are distinct and appear in positive orientation in each genomic map. If the number d of genomic maps
is not a constant but is part of the input, then δ-gap-CMSR-d is NP-hard to approximate within any constant less than
10
√
5− 21 = 1.3606 . . ., even if all markers are distinct and appear in positive orientation in each genomic map.

We refer to [13,20,9] for some related results. Maximal Strip Recovery is a typical combinatorial problem in biological
sequence analysis, in particular, genome rearrangement. The earliest inapproximability result for genome rearrangement
problems is due to Berman and Karpinski [7], who proved that Sorting by Reversals is NP-hard to approximate within any
constant less than 1237

1236 . More recently, Zhu and Wang [28] proved that Translocation Distance is NP-hard to approximate
within any constant less than 5717

5716 . Similar inapproximability results have also been obtained for other important problems
in bioinformatics. For example, Nagashima and Yamazaki [23] proved that Non-overlapping Local Alignment is NP-hard to
approximate within any constant less than 8668

8665 , andManthey [22] proved thatMultiple Sequence Alignment withweighted
sum-of-pairs score is APX-hard for arbitrary metric scoring functions over the binary alphabet.

The rest of this paper is organized as follows. We first review some preliminaries in Section 2. Then, in Sections 3–6,
we show that MSR-d for any d ≥ 2 is APX-hard, and prove explicit approximation lower bounds. (For any two constants d
and d′ such that d′ > d ≥ 2, the problem MSR-d is a special case of the problem MSR-d′ with d′ − d redundant genomic
maps. Thus the APX-hardness of MSR-2 implies the APX-hardness of MSR-d for all constants d ≥ 2. To present the ideas
progressively, however, we show that MSR-4, MSR-3, andMSR-2 are APX-hard by three different L-reductions of increasing
sophistication.) In Section 7, we present a 2d-approximation algorithm for MSR-d that runs in polynomial time even if the
number d of genomic maps is not a constant but is part of the input. In Section 8, we present inapproximability results for
CMSR-d, δ-gap-MSR-d, and δ-gap-CMSR-d. We conclude with remarks in Section 9.

2. Preliminaries

L-reduction. Given two optimization problems X and Y, an L-reduction [24] from X to Y consists of two polynomial-time
functions f and g and two positive constants α and β satisfying the following two properties:

1. For every instance x of X, f (x) is an instance of Y such that

opt(f (x)) ≤ α · opt(x). (1)

2. For every feasible solution y to f (x), g(y) is a feasible solution to x such that

|opt(x)− val(g(y))| ≤ β · |opt(f (x))− val(y)|. (2)

Here opt(x) denotes the value of the optimal solution to an instance x, and val(y) denotes the value of a solution y. The
two properties of L-reduction imply the following inequality on the relative errors of approximation:

|opt(x)− val(g(y))|
opt(x)

≤ αβ ·
|opt(f (x))− val(y)|

opt(f (x))
.

A relative error of ϵ corresponds to an approximation factor of 1+ ϵ for a minimization problem, and corresponds to an
approximation factor of 1

1−ϵ
for a maximization problem. Thus we have the following propositions:

1. For a minimization problem X and a minimization problem Y, if X is NP-hard to approximate within 1 + αβϵ, then Y is
NP-hard to approximate within 1+ ϵ.

2. For a maximization problem X and a maximization problem Y, if X is NP-hard to approximate within 1
1−αβϵ

, then Y is
NP-hard to approximate within 1

1−ϵ
.

3. For a minimization problem X and a maximization problem Y, if X is NP-hard to approximate within 1+ αβϵ, then Y is
NP-hard to approximate within 1

1−ϵ
.

4. For a maximization problem X and a minimization problem Y, if X is NP-hard to approximate within 1
1−αβϵ

, then Y is
NP-hard to approximate within 1+ ϵ.

APX-hard optimization problems.We review the complexities of some APX-hard optimization problems that will be used
in our reductions.

• Max-IS-∆ is the problem Maximum Independent Set in graphs of maximum degree ∆. Max-IS-3 is APX-hard; see [4].
Moreover, Chlebík and Chlebíková [12] showed thatMax-IS-3 andMax-IS-4 areNP-hard to approximatewithin 1.010661
and 1.0215517, respectively. Trevisan [25] showed that Max-IS-∆ is NP-hard to approximate within ∆/2O(

√
log∆).

3762 M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774

• Min-VC-∆ is the problem Minimum Vertex Cover in graphs of maximum degree ∆. Min-VC-3 is APX-hard; see [4].
Moreover, Chlebík and Chlebíková [12] showed that Min-VC-3 and Min-VC-4 are NP-hard to approximate within
1.0101215 and 1.0202429, respectively, and, for any ∆ ≥ 228, Min-VC-∆ is NP-hard to approximate within 7

6 −

O(log∆/∆). Dinur and Safra [14] showed that Minimum Vertex Cover is NP-hard to approximate within any constant
less than 10

√
5− 21 = 1.3606

• Given a set X of n variables and a set C ofm clauses, where each variable has exactly p literals (in p different clauses) and
each clause is the disjunction of exactly q literals (of q different variables), Ep-Occ-Max-Eq-SAT is the problem of finding
an assignment of X that satisfies the maximum number of clauses in C. Note that np = mq. Berman and Karpinski [8]
showed that E3-Occ-Max-E2-SAT is NP-hard to approximate within any constant less than 464

463 .
• Given d disjoint sets Vi of vertices, 1 ≤ i ≤ d, and given a set E ⊆ V1×· · ·×Vd of hyper-edges, d-Dimensional-Matching is

the problem of finding amaximum-cardinality subsetM ⊆ E of pairwise-disjoint hyper-edges. Hazan et al. [16] showed
that d-Dimensional-Matching is NP-hard to approximate within Ω(d/ log d).

Linear forest and linear arboricity. A linear forest is a graph in which every connected component is a path. The linear
arboricity of a graph is theminimumnumber of linear forests intowhich the edges of the graph can be decomposed. Akiyama
et al. [2,3] conjectured that the linear arboricity of every graph G of maximum degree ∆ satisfies la(G) ≤ ⌈(∆+ 1)/2⌉. This
conjecture has been confirmed for graphs of small constant degrees, and has been shown to be asymptotically correct as
∆→∞ [5]. In particular, the proof of the conjecture for ∆ = 3 and 4 are constructive [2,1,3] and lead to polynomial-time
algorithms for decomposing any graph of maximum degree ∆ = 3 and 4 into at most ⌈(∆+ 1)/2⌉ = 2 and 3 linear forests,
respectively. Also, the proof of the first upper bound on linear arboricity by Akiyama et al. [3] implies a simple polynomial-
time algorithm for decomposing any graph of maximum degree ∆ into at most ⌈3⌈∆/2⌉/2⌉ linear forests.

Define
f (∆) = max

G
f (G),

where G ranges over all graphs of maximum degree ∆, and f (G) denotes the number of linear forests that Akiyama, Exoo,
and Harary’s algorithm [3] decomposes G into. Then

⌈(∆+ 1)/2⌉ ≤ f (∆) ≤ ⌈3⌈∆/2⌉/2⌉. (3)

3. MSR-4 is APX-hard

In this section, we prove that MSR-4 is APX-hard by a simple L-reduction from Max-IS-3. Before we present the
L-reduction, we first show that MSR-4 is NP-hard by a reduction in the classical style, which is perhaps more familiar to
most readers. Throughout this paper, we follow this progressive format of presentation.

3.1. NP-hardness reduction fromMax-IS-3 toMSR-4

Let G be a graph ofmaximumdegree 3. Let n be the number of vertices in G. Partition the edges of G into two linear forests
E1 and E2. Let V1 and V2 be the vertices of G that are not incident to any edges in E1 and in E2, respectively. We construct
four genomic maps G→, G←, G1, and G2, where eachmap is a permutation of the following 2n distinct markers all in positive
orientation:

• n pairs of vertex markers
i
⊂ and

i
⊃, 1 ≤ i ≤ n.

G→ and G← are concatenations of the n pairs of vertex markers with ascending and descending indices, respectively:

G→ :
1
⊂

1
⊃ · · ·

n
⊂

n
⊃

G← :
n
⊂

n
⊃ · · ·

1
⊂

1
⊃

G1 and G2 are represented schematically as follows:
G1 : ⟨E1⟩ ⟨V1⟩

G2 : ⟨E2⟩ ⟨V2⟩

⟨E1⟩ and ⟨E2⟩ consist of vertex markers of the vertices incident to the edges in E1 and E2, respectively. The markers of the
vertices in each path v1v2 . . . vk are grouped together in an interleaving pattern: for 1 ≤ i ≤ k, the left marker of vi, the
right marker of vi−1 (if i > 1), the left marker of vi+1 (if i < k), and the right marker of vi are consecutive.
⟨V1⟩ and ⟨V2⟩ consist of vertex markers of the vertices in V1 and V2, respectively. The left marker and the right marker of
each pair are consecutive.

This completes the construction. We refer to Fig. 1 (a) and (b) for an example.
Two pairs of markers intersect in a genomic map if a marker of one pair appears between the two markers of the other

pair. The following property of our construction is obvious:
Proposition 1. Two vertices are adjacent in the graph G if and only if the corresponding two pairs of vertex markers intersect in
one of the two genomic maps G1,G2.

M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774 3763

Fig. 1. (a) The graph G: E1 is a single solid path ⟨1, 2, 3, 4, 5, 6⟩, E2 consists of two dotted paths ⟨1, 7, 8, 3⟩ and ⟨4, 9, 6⟩, V1 = {7, 8, 9}, V2 = {2, 5}. (b) The
four genomic maps G→,G←,G1,G2 . (c) The four subsequences of the genomic maps corresponding to the independent set {2, 4, 6, 8} in the graph.

We say that four subsequences of the four genomic maps G→,G←,G1,G2 are canonical if each strip of the subsequences
is a pair of vertex markers. We have the following lemma on canonical subsequences:

Lemma 1. In any four subsequences of the four genomic maps G→,G←,G1,G2, respectively, each strip must be a pair of vertex
markers.

Proof. By construction, a strip cannot include two vertexmarkers of different indices because they appear in different orders
in G→ and in G←. �

The following lemma establishes the NP-hardness of MSR-4:

Lemma 2. The graph G has an independent set of at least k vertices if and only if the four genomic maps G→,G←,G1,G2 have
four subsequences whose total strip length l is at least 2k.

Proof. We first prove the ‘‘only if’’ direction. Suppose that the graph G has an independent set of at least k vertices. We will
show that the four genomic maps G→,G←,G1,G2 have four subsequences of total strip length at least 2k. By Proposition 1,
the k vertices in the independent set correspond to k pairs of vertex markers that do not intersect each other in the genomic
maps. These k pairs of vertex markers induce a subsequence of length 2k in each genomic map. In each subsequence, the
left marker and the right marker of each pair appear consecutively and compose a strip. Thus the total strip length is at least
2k. We refer to Fig. 1(c) for an example.

We next prove the ‘‘if’’ direction. Suppose that the four genomic maps G→,G←,G1,G2 have four subsequences of total
strip length at least 2k. We will show that the graph G has an independent set of at least k vertices. By Lemma 1, each strip
of the subsequences must be a pair of vertex markers. Thus we obtain at least k pairs of vertex markers that do not intersect
each other in the genomic maps. Then, by Proposition 1, the corresponding set of at least k vertices in the graph G form an
independent set. �

3.2. L-reduction fromMax-IS-3 toMSR-4

We present an L-reduction (f , g, α, β) from Max-IS-3 to MSR-4 as follows. The function f , given a graph G of maximum
degree 3, constructs the four genomicmapsG→,G←,G1,G2 as in theNP-hardness reduction. Let k∗ be the number of vertices
in amaximum independent set inG, and let l∗ be themaximum total strip length of any four subsequences ofG→,G←,G1,G2,
respectively. By Lemma 2, we have

l∗ = 2k∗.

Choose α = 2, then property (1) of L-reduction is satisfied.

3764 M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774

The function g , given four subsequences of the four genomic maps G→,G←,G1,G2, respectively, returns an independent
set of vertices in the graph G corresponding to the pairs of vertex markers that are strips of the subsequences. Let l be the
total strip length of the subsequences, and let k be the number of vertices in the independent set returned by the function
g . Then k ≥ l/2. It follows that

|k∗ − k| = k∗ − k ≤ l∗/2− l/2 = |l∗ − l|/2.
Choose β = 1/2, then property (2) of L-reduction is also satisfied.

We have obtained an L-reduction fromMax-IS-3 to MSR-4 with αβ = 1. Chlebík and Chlebíková [12] showed that Max-
IS-3 is NP-hard to approximate within 1.010661. It follows that MSR-4 is also NP-hard to approximate within 1.010661. The
lower bound extends to MSR-d for all constants d ≥ 4.

The L-reduction from Max-IS-3 to MSR-4 can be obviously generalized:
Lemma 3. Let ∆ ≥ 3 and d ≥ 4. If there is a polynomial-time algorithm for decomposing any graph of maximum degree ∆ into
d− 2 linear forests, then there is an L-reduction fromMax-IS-∆ to MSR-d with constants α = 2 and β = 1/2.

4. MSR-3 is APX-hard

In this section, we prove that MSR-3 is APX-hard by a slightly more sophisticated L-reduction again from Max-IS-3.

4.1. NP-hardness reduction fromMax-IS-3 toMSR-3

Let G be a graph of maximum degree 3. Let n be the number of vertices in G. Partition the edges of G into two linear
forests E1 and E2. Let V1 and V2 be the vertices of G that are not incident to any edges in E1 and E2, respectively. We construct
three genomic maps G0, G1, and G2, where each map is a permutation of the following 4n distinct markers all in positive
orientation:

• n pairs of vertex markers
i
⊂ and

i
⊃, 1 ≤ i ≤ n;

• n pairs of dummy markers
i
@ and

i
A, 1 ≤ i ≤ n.

G0 consists of the 2n pairs of vertex and dummy markers in an alternating pattern:
1
⊂

1
⊃

1
@

1
A · · ·

n
⊂

n
⊃

n
@

n
A

G1 and G2 are represented schematically as follows:
G1 : ⟨V1⟩ ⟨E1⟩ ⟨D⟩
G2 : ⟨D⟩ ⟨E2⟩ ⟨V2⟩

⟨E1⟩ and ⟨E2⟩ consist of vertex markers of the vertices incident to the edges in E1 and E2, respectively. The markers of the
vertices in each path v1v2 . . . vk are grouped together in an interleaving pattern: for 1 ≤ i ≤ k, the left marker of vi, the
right marker of vi−1 (if i > 1), the left marker of vi+1 (if i < k), and the right marker of vi are consecutive.
⟨V1⟩ and ⟨V2⟩ consist of vertex markers of the vertices in V1 and V2, respectively. The left marker and the right marker of
each pair are consecutive.
⟨D⟩ is the reverse permutation of the n pairs of dummy markers:

n
@

n
A · · ·

1
@

1
A

This completes the construction. We refer to Fig. 2 (a) and (b) for an example.
It is clear that Proposition 1 still holds. The following lemma on canonical subsequences is analogous to Lemma 1:

Lemma 4. If the three genomic maps G0,G1,G2 have three subsequences of total strip length l, then they must have three
subsequences of total strip length at least l such that (i) each strip is either a pair of vertex markers or a pair of dummy markers,
and (ii) each pair of dummy markers is a strip.
Proof. We present an algorithm that transforms the subsequences into canonical form without reducing the total strip
length. By construction, a strip cannot include both a dummy marker and a vertex marker because they appear in different
orders in G1 and in G2, and a strip cannot include two dummy markers of different indices because they appear in different
orders in G0 and in G1 and G2. Suppose that a strip S consists of vertex markers of two or more different indices. Then there
must be two vertex markers µ and ν of different indices i and j that are consecutive in S. Since the vertex markers and the
dummy markers appear in G0 in an alternating pattern with ascending indices, we must have i < j. Moreover, the pair of
dummy markers of index i, which appears between µ and ν in G0, must be missing from the subsequences. Now cut the
strip S into Sµ and Sν between µ and ν. If Sµ (resp. Sν) consists of only one marker µ (resp. ν), delete the lone marker from
the subsequences (recall that a strip must include at least twomarkers). This decreases the total strip length by at most two.
Next insert the pair of dummymarkers of index i to the subsequences as a new strip. This increases the total strip length by
exactly two. Repeat this operation whenever a strip contains two vertex markers of different indices and whenever a pair
of dummymarkers is missing from the subsequences, then in O(n) steps we obtain three subsequences of total strip length
at least l in canonical form. �

M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774 3765

Fig. 2. (a) The graph G: E1 is a single (solid) path ⟨1, 2, 3, 4, 5, 6⟩, E2 consists of two (dotted) paths ⟨1, 7, 8, 3⟩ and ⟨4, 9, 6⟩, V1 = {7, 8, 9}, V2 = {2, 5}. (b)
The three genomic maps G0,G1,G2 . (c) The three subsequences of the genomic maps corresponding to the independent set {2, 4, 6, 8} in the graph.

The following lemma, analogous to Lemma 2, establishes the NP-hardness of MSR-3:
Lemma 5. The graph G has an independent set of at least k vertices if and only if the three genomic maps G0,G1,G2 have three
subsequences whose total strip length l is at least 2(n+ k).
Proof. We first prove the ‘‘only if’’ direction. Suppose that the graph G has an independent set of at least k vertices. We will
show that the three genomicmapsG0,G1,G2 have three subsequences of total strip length at least 2(n+k). By Proposition 1,
the k vertices in the independent set correspond to k pairs of vertex markers that do not intersect each other in the genomic
maps. These k pairs of vertex markers together with the n pairs of dummymarkers induce a subsequence of length 2(n+ k)
in each genomic map. In each subsequence, the left marker and the right marker of each pair appear consecutively and
compose a strip. Thus the total strip length is at least 2(n+ k). We refer to Fig. 2(c) for an example.

We next prove the ‘‘if’’ direction. Suppose that the three genomic maps G0,G1,G2 have three subsequences of total strip
length at least 2(n + k). We will show that the graph G has an independent set of at least k vertices. By Lemma 4, the
three genomic maps have three subsequences of total strip length at least 2(n+ k) such that each strip is a pair of markers.
Excluding the n pairs of dummy markers, we obtain at least k pairs of vertex markers that do not intersect each other in
the genomic maps. Then, by Proposition 1, the corresponding set of at least k vertices in the graph G form an independent
set. �

4.2. L-reduction fromMax-IS-3 toMSR-3

We present an L-reduction (f , g, α, β) from Max-IS-3 to MSR-3 as follows. The function f , given a graph G of maximum
degree 3, constructs the three genomic maps G0,G1,G2 as in the NP-hardness reduction. Let k∗ be the number of vertices
in a maximum independent set in G, and let l∗ be the maximum total strip length of any three subsequences of G0,G1,G2,
respectively. Since a simple greedy algorithm (which repeatedly selects a vertex not adjacent to the previously selected
vertices) finds an independent set of at least n/(3+1) vertices in the graph G ofmaximumdegree 3, we have k∗ ≥ n/(3+1).
By Lemma 5, we have l∗ = 2(n+ k∗). It follows that

l∗ = 2(n+ k∗) ≤ 2((3+ 1)k∗ + k∗) = 2(3+ 2)k∗ = 10k∗.
Choose α = 10, then property (1) of L-reduction is satisfied.

The function g , given three subsequences of the three genomic maps G0,G1,G2, respectively, transforms the
subsequences into canonical form as in the proof of Lemma 4, then returns an independent set of vertices in the graph
G corresponding to the pairs of vertex markers that are strips of the subsequences. Let l be the total strip length of the
subsequences, and let k be the number of vertices in the independent set returned by the function g . Then k ≥ l/2 − n. It
follows that

|k∗ − k| = k∗ − k ≤ (l∗/2− n)− (l/2− n) = |l∗ − l|/2.
Choose β = 1/2, then property (2) of L-reduction is also satisfied.

We have obtained an L-reduction fromMax-IS-3 to MSR-3 with αβ = 5. Chlebík and Chlebíková [12] showed that Max-
IS-3 is NP-hard to approximate within 1.010661 = 1

1−(1−1/1.010661) . It follows that MSR-3 is NP-hard to approximate within
1

1−(1−1/1.010661)/5 = 1.002114

3766 M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774

5. MSR-2 is APX-hard

In this section, we prove that MSR-2 is APX-hard by an L-reduction from Ep-Occ-Max-Eq-SAT with p = 3 and q ≥ 2.

5.1. NP-hardness reduction from Ep-Occ-Max-Eq-SAT toMSR-2

Let (X, C) be an instance of Ep-Occ-Max-Eq-SAT, where X is a set of n variables xi, 1 ≤ i ≤ n, and C is a set of m clauses
Cj, 1 ≤ j ≤ m. Without loss of generality, assume that the p literals of each variable are neither all positive nor all negative.
Since p = 3, it follows that each variable has either 2 positive and 1 negative literals, or 1 positive and 2 negative literals.

We construct two genomic maps G1 and G2, where each map is a permutation of 2(5n+ m+ qm+ 2) distinct markers
all in positive orientation:

• 1 pair of variable markers
i
<

i
> for each variable xi, 1 ≤ i ≤ n;

• 2 pairs of true markers
i,1
J

i,1
I and

i,2
J

i,2
I for each variable xi, 1 ≤ i ≤ n;

• 2 pairs of false markers
i,1
▹

i,1
◃ and

i,2
▹

i,2
◃ for each variable xi, 1 ≤ i ≤ n;

• 1 pair of clause markers
j
b

j
c for each clause Cj, 1 ≤ j ≤ m;

• q pairs of literal markers
j,t
⊂

j,t
⊃, 1 ≤ t ≤ q, for each clause Cj, 1 ≤ j ≤ m;

• 2 pairs of dummy markers
1
@

1
A and

2
@

2
A.

The construction is done in two steps: first arrange the variable markers, the true/false markers, the clause markers,
and the dummy markers into two sequences Ǧ1 and Ǧ2, next insert the literal markers at appropriate positions in the two
sequences to obtain the two genomic maps G1 and G2.

The two sequences Ǧ1 and Ǧ2 are represented schematically as follows:

Ǧ1 : ⟨x1⟩ · · · ⟨xn⟩
1
@

1
A

2
@

2
A

1
b

1
c · · ·

m
b

m
c

1
<

1
> · · ·

n
<

n
>

Ǧ2 : ⟨xn⟩ · · · ⟨x1⟩
m
b

m
c · · ·

1
b

1
c

2
@

2
A

1
@

1
A

For each variable xi, ⟨xi⟩ consists of the corresponding four pairs of true/false markers
i,1
J

i,1
I

i,2
J

i,2
I

i,1
▹

i,1
◃

i,2
▹

i,2
◃ in Ǧ1 and Ǧ2, and

in addition the pair of variable markers
i
<

i
> in Ǧ2. These markers are arranged in the two sequences in a special pattern as

follows (the indices i are omitted for simpler notations):
1
▹

2
J

1
◃

2
I

2
▹

1
J

2
◃

1
I

1
J

1
▹

1
I

1
◃ < >

2
▹

2
J

2
◃

2
I

Now we insert the literal markers to the two sequences Ǧ1 and Ǧ2 to obtain the two genomic maps G1 and G2. First, we
obtain G1 from Ǧ1. For each positive literal (resp. negative literal) of a variable xi that occurs in a clause Cj, place a pair of

literal markers
j,t
⊂

j,t
⊃, 1 ≤ t ≤ q, around a false marker

i,s
▹ (resp. true marker

i,s
I), 1 ≤ s ≤ 2. The four possible positions of the

three pairs of literal markers of each variable xi are as follows:

⊂
1
▹⊃

2
J

1
◃ ⊂

2
I⊃ ⊂

2
▹⊃

1
J

2
◃ ⊂

1
I⊃

1
J

1
▹

1
I

1
◃ < >

2
▹

2
J

2
◃

2
I

Next, we obtain G2 from Ǧ2. Without loss of generality, assume that the q pairs of literal markers of each clause Cj appear
in G1 with ascending indices:

j,1
⊂

j,1
⊃ · · ·

j,q
⊂

j,q
⊃

Insert the q pairs of literal markers in G2 immediately after the pair of clause markers
j
b

j
c, in an interleaving pattern:

j,q
⊂ · · ·

j,1
⊂

j,q
⊃ · · ·

j,1
⊃

This completes the construction. We refer to Fig. 3 (a) and (b) for an example of the two steps.
We say that two subsequences of the two genomic maps G1 and G2 are canonical if each strip of the two subsequences

is a pair of markers. We refer to Fig. 3 (c) and (d) for two examples of canonical subsequences. The following lemma on
canonical subsequences is analogous to Lemmas 1 and 4:

Lemma 6. If the two genomicmaps G1 andG2 have two subsequences of total strip length l, then theymust have two subsequences
of total strip length at least l such that each strip is a pair of markers and, moreover, (i) the two pairs of dummy markers are two
strips, (ii) the m pairs of clause markers and the n pairs of variable markers are m+n strips, (iii) at most one pair of literal markers
of each clause is a strip, (iv) either both pairs of true markers or both pairs of false markers of each variable are two strips.

M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774 3767

1,1
▹

1,2
J

1,1
◃

1,2
I

1,2
▹

1,1
J

1,2
◃

1,1
I

2,1
▹

2,2
J

2,1
◃

2,2
I

2,2
▹

2,1
J

2,2
◃

2,1
I

1
@

1
A

2
@

2
A

1
b

1
c

2
b

2
c

3
b

3
c

1
<

1
>

2
<

2
>

2,1
J

2,1
▹

2,1
I

2,1
◃

2
<

2
>

2,2
▹

2,2
J

2,2
◃

2,2
I

1,1
J

1,1
▹

1,1
I

1,1
◃

1
<

1
>

1,2
▹

1,2
J

1,2
◃

1,2
I

3
b

3
c

2
b

2
c

1
b

1
c

2
@

2
A

1
@

1
A

a
1,1
⊂

1,1
▹

1,1
⊃

1,2
J

1,1
◃

3,1
⊂

1,2
I

3,1
⊃

2,1
⊂

1,2
▹

2,1
⊃

1,1
J

1,2
◃

1,1
I

1,2
⊂

2,1
▹

1,2
⊃

2,2
J

2,1
◃

2,2
⊂

2,2
I

2,2
⊃

2,2
▹

2,1
J

2,2
◃

3,2
⊂

2,1
I

3,2
⊃

1
@

1
A

2
@

2
A

1
b

1
c

2
b

2
c

3
b

3
c

1
<

1
>

2
<

2
>

2,1
J

2,1
▹

2,1
I

2,1
◃

2
<

2
>

2,2
▹

2,2
J

2,2
◃

2,2
I

1,1
J

1,1
▹

1,1
I

1,1
◃

1
<

1
>

1,2
▹

1,2
J

1,2
◃

1,2
I

3
b

3
c

3,2
⊂

3,1
⊂

3,2
⊃

3,1
⊃

2
b

2
c

2,2
⊂

2,1
⊂

2,2
⊃

2,1
⊃

1
b

1
c

1,2
⊂

1,1
⊂

1,2
⊃

1,1
⊃

2
@

2
A

1
@

1
A

b
1,1
⊂

1,1
⊃

1,2
J

1,2
I

2,1
⊂

2,1
⊃

1,1
J

1,1
I

2,1
▹

2,1
◃

2,2
▹

2,2
◃

3,2
⊂

3,2
⊃

1
@

1
A

2
@

2
A

1
b

1
c

2
b

2
c

3
b

3
c

1
<

1
>

2
<

2
>

2,1
▹

2,1
◃

2
<

2
>

2,2
▹

2,2
◃

1,1
J

1,1
I

1
<

1
>

1,2
J

1,2
I

3
b

3
c

3,2
⊂

3,2
⊃

2
b

2
c

2,1
⊂

2,1
⊃

1
b

1
c

1,1
⊂

1,1
⊃

2
@

2
A

1
@

1
A

c
1,1
⊂

1,1
⊃

1,2
J

1,2
I

1,1
J

1,1
I

2,1
▹

2,1
◃

2,2
⊂

2,2
⊃

2,2
▹

2,2
◃

3,2
⊂

3,2
⊃

1
@

1
A

2
@

2
A

1
b

1
c

2
b

2
c

3
b

3
c

1
<

1
>

2
<

2
>

2,1
▹

2,1
◃

2
<

2
>

2,2
▹

2,2
◃

1,1
J

1,1
I

1
<

1
>

1,2
J

1,2
I

3
b

3
c

3,2
⊂

3,2
⊃

2
b

2
c

2,2
⊂

2,2
⊃

1
b

1
c

1,1
⊂

1,1
⊃

2
@

2
A

1
@

1
A

d
Fig. 3. MSR-2 construction for the E3-Occ-Max-E2-SAT instance C1 = x1 ∨ x2 , C2 = x1 ∨ x̄2 , and C3 = x̄1 ∨ x̄2 . (a) The two sequences Ǧ1 and Ǧ2 . (b) The
two genomic maps G1 and G2 . (c) Two canonical subsequences for the assignment x1 = true and x2 = false. (d) Two other canonical subsequences for the
assignment x1 = true and x2 = false.

Proof. We present an algorithm that transforms the subsequences into canonical form without reducing the total strip
length. The algorithm performs incremental operations on the subsequences such that the following eight conditions are
satisfied progressively:

1. Each strip that includes a dummy marker is a pair of dummy markers. A strip cannot include two dummy markers
of different indices because they appear in different orders in G1 and in G2. Note that in G2 the dummymarkers appear after
the other markers. Suppose that a strip S includes both a dummy marker and a non-dummy marker. Then there must be a
non-dummymarkerµ and a dummymarker ν consecutive in S. Since the two pairs of dummymarkers appear consecutively
but in different orders in G1 and in G2, one of the two pairs must appear between µ and ν either in G1 or in G2. This pair is
hencemissing from the subsequences. Now cut the strip S into Sµ and Sν betweenµ and ν. If Sµ (resp. Sν) consists of only one
markerµ (resp. ν), delete the lonemarker from the subsequences (recall that a stripmust include at least twomarkers). This
decreases the total strip length by at most two. Next insert the missing pair of dummy markers to the subsequences. This
pair of dummy markers becomes either a new strip by itself, or part of a longer strip (recall that a strip must be maximal).
In any case, the insertion increases the total strip length by exactly two. Overall, this cut-delete-insert operation (also used
in Lemma 4) does not reduce the total strip length. After the first operation, a second operation may be necessary. But
since each operation here deletes only lone markers (in Sµ and Sν) and inserts always a pair of markers, the pair inserted
by one operation is never deleted by a subsequent operation. Thus at most two operations are sufficient to transform the
subsequences until each strip that includes a dummy marker is indeed a pair of dummy markers.

2. The two pairs of dummy markers are two strips. Suppose that the subsequences do not have both pairs of dummy
markers as strips. Then, by condition 1, we must have either both pairs of dummymarkers missing from the subsequences,
or one pair missing and the other pair forming a strip. Note that in G1 the dummymarkers separate the true/false and literal
markers on the left from the clause and variable markers on the right, and that in G2 the dummy markers appear after the
other markers. If the missing dummy markers do not disrupt any existing strips in G1, then simply insert each missing pair
to the subsequences as a new strip. Otherwise, there must be a true/false or literal markerµ and a clause or variable marker
ν consecutive in a strip S, such that both pairs of dummy markers appear in G1 between µ and ν and hence are missing
from the subsequences. Cut the strip S between µ and ν, delete any lone markers if necessary, then insert the two pairs of
dummy markers to the subsequences as two new strips.

3. Each strip that includes a clause or variable marker is a pair of clause markers or a pair of variable markers. Note
that inG1 the clause and variablemarkers are separated by the dummymarkers from the othermarkers. Thus, by condition 2,
a strip that includes a clause or variable marker cannot include any markers of the other types. Also, a strip cannot include
two clause markers of different clauses, or two variable markers of different variables, or a clause marker and a variable
marker, because these combinations appear in different orders in G1 and in G2. Thus this condition is automatically satisfied
after conditions 1 and 2.

4. The m pairs of clause markers and the n pairs of variable markers are m+ n strips. Suppose that the subsequences
do not have all m+ n pairs of clause and variable markers as m+ n strips. By condition 3, the clause and variable markers
in the subsequences must be in pairs, each pair forming a strip. Then the clause and variable markers missing from the
subsequences must be in pairs too. For each missing pair of clause or variable markers, if the pair does not disrupt any
existing strips in G2, then simply insert it to the subsequences as a new strip. Otherwise, there must be two true/false or
literal markers µ and ν consecutive in a strip S, such that the missing pair appears in G2 between µ and ν. Cut the strip S
between µ and ν, delete any lone markers if necessary, then insert each missing pair of clause markers between µ and ν to
the subsequences as a new strip.

3768 M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774

Fig. 4. Replacing vertices of the independent set in the conflict graph of the four pairs of true/false markers and the three pairs of literal markers of each
variable. Vertices in the independent set are black. Edges in the 4-cycle are thick. In this example the strip S is first deleted then inserted back.

5. Each strip that includes a literal marker is a pair of literal markers. Note that in G2 the dummy and clause markers
separate the literals markers from the other markers, and separate the literal markers of different clauses from each other.
Thus, by conditions 2 and 4, a strip cannot include both a literal marker and a non-literal marker, or two literal markers of
different clauses. Suppose that a strip S includes two literal markers µ and ν of the same clause Cj but of different indices
j, s and j, t . Assume without loss of generality that µ and ν are consecutive in S. Recall the orders of the literal markers of
each clause in the two genomic maps:

j,1
⊂

j,1
⊃ · · ·

j,s
⊂

j,s
⊃ · · ·

j,t
⊂

j,t
⊃

ascending

· · ·
j,q
⊂

j,q
⊃

j,q
⊂ · · ·

j,t
⊂ · · ·

j,s
⊂

descending

· · ·
j,1
⊂

j,q
⊃ · · ·

j,t
⊃ · · ·

j,s
⊃

descending

· · ·
j,1
⊃

Since in G1 the pairs of literal markers appear with ascending indices, the index s of the marker µ must be less than the
index t of themarker ν. Then, since in G2 the left markers appear with descending indices before the right markers also with

descending indices, µ must be a left marker, and ν must be a right marker. That is, µν =
j,s
⊂

j,t
⊃. All markers between µ and

ν in G1 must be missing from the subsequences. Among these missing markers, those that are literal markers of Cj appear
in G2 either consecutively before µ or consecutively after ν. Replace either µ or ν by a missing literal marker of Cj, that is,

either
j,s
⊂ by

j,t
⊂, or

j,t
⊃ by

j,s
⊃, then µ and ν become a pair. Denote this shift operation by

µν :
j,s
⊂

j,t
⊃→

j,t
⊂

j,t
⊃ or

j,s
⊂

j,s
⊃ .

The strip S cannot include any other literal markers of the clause Cj besides µ and ν because (i) the markers before
j,s
⊂ in G1

appear after
j,s
⊂ in G2, and (ii) the markers after

j,t
⊃ in G1 appear before

j,t
⊃ in G2.

6. At most one pair of literal markers of each clause is a strip. Note that the q pairs of literal markers of each clause
appear in G2 in an interleaving pattern. It follows by condition 5 that at most one of the q pairs can be a strip.

7. Each strip that includes a true/false marker is a pair of true markers or a pair of false markers. By conditions 1, 3,
and 5, it follows that each strip that includes a true/falsemarkermust include true/falsemarkers only. A strip cannot include
two true/false markers of different variables because they appear in different orders in G1 and in G2. Suppose that a strip S
includes two true/false markers µ and ν of the same variable xi such that µ and ν are not a pair. Recall the orders of the four
pairs of true/false markers of each variable xi in G1 and G2, the four possible positions of the three pairs of literal markers in
G1, and the position of the variable marker in G2:

⊂
1
▹⊃

2
J

1
◃ ⊂

2
I⊃ ⊂

2
▹⊃

1
J

2
◃ ⊂

1
I⊃

1
J

1
▹

1
I

1
◃ < >

2
▹

2
J

2
◃

2
I

Note that the pair of variable markers in G2 forbids a strip from including two true/false markers of different indices.
Thus the strip S must consist of true/false markers of both the same variable and the same index. Assume without loss of
generality that µ appears before ν in S. It is easy to check that there are only two such combinations of µ and ν: either

µν =
1
▹

1
I or µν =

2
J

2
◃. Moreover, the strip S must include only the two markers µ and ν. For either combination of µ and

ν, use a shift operation to make µ and ν a pair:

µν :
1
▹

1
I→

1
▹

1
◃ or

1
J

1
I

µν :
2
J

2
◃→

2
J

2
I or

2
▹

2
◃ .

8. Either both pairs of true markers or both pairs of false markers of each variable are two strips. Consider the conflict
graph of the four pairs of true/false markers and the three pairs of literal markers of each variable xi in Fig. 4. The graph has
one vertex for each pair, and has an edge between two vertices if and only if the corresponding pairs intersect in either G1
or G2. By conditions 1, 3, 5, and 7, the strips of the subsequences from the seven pairs correspond to an independent set in
the conflict graph of seven vertices.

M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774 3769

Note that the four vertices corresponding to the four pairs of true/false markers induce a 4-cycle in the conflict graph.
Suppose that neither both pairs of true markers nor both pairs of false markers are strips. Then at most one of the four pairs,
say S, is a strip. Delete S from the subsequences. Recall that each variable has either 2 positive and 1 negative literals, or
1 positive and 2 negative literals. Let T be the pair of literal markers whose sign is opposite to the sign of the other two
pairs of literal markers. Also delete T from the subsequences if it is there. Next insert two pairs of true/false markers to the

subsequences: if T is positive, both pairs of false markers
i,1
▹

i,1
◃ and

i,2
▹

i,2
◃; if T is negative, both pairs of true markers

i,1
J

i,1
I and

i,2
J

i,2
I.
When all eight conditions are satisfied, the subsequences are in the desired canonical form. �

The following lemma, analogous to Lemmas 2 and 5, establishes the NP-hardness of MSR-2:

Lemma 7. The variables in X have an assignment that satisfies at least k clauses in C if and only if the two genomic maps G1 and
G2 have two subsequences whose total strip length l is at least 2(3n+m+ k+ 2).

Proof. We first prove the ‘‘only if’’ direction. Suppose that the variables in X have an assignment that satisfies at least k
clauses in C. We will show that the two genomic maps G1 and G2 have two subsequences of total strip length at least
2(3n+m+ k+ 2). For each variable xi, choose the two pairs of true markers if the variable is assigned true, or the two pairs
of false markers if the variable is assigned false. For each satisfied clause Cj, choose one pair of literal markers corresponding
to a true literal (when there are two or more true literals, choose any one). Also choose allm+ n pairs of clause and variable
markers and both pairs of dummy markers. The chosen markers induce two subsequences of the two genomic maps. It is
easy to check that, by construction, the two subsequences have at least 3n+m+ k+2 strips, each strip forming a pair. Thus
the total strip length is at least 2(3n+m+ k+ 2). We refer to Fig. 3(c) and (d) for two examples.

We next prove the ‘‘if’’ direction. Suppose that the two genomic maps G1 and G2 have two subsequences of total strip
length at least 2(3n+m+ k+ 2). We will show that the variables in X have an assignment that satisfies at least k clauses in
C. By Lemma 6, the two genomic maps have two subsequences of total strip length at least 2(3n+m+k+2) such that each
strip is a pair and, moreover, the two pairs of dummy markers, the m+ n pairs of clause and variable markers, at most one
pair of literal markers of each clause, and either both pairs of true markers or both pairs of false markers of each variable
are strips. Thus at least k strips are pairs of literal markers, each pair of a different clause. Again it is easy to check that, by
construction, the assignment of the variables in X to either true or false (corresponding to the choices of either both pairs
of true markers or both pairs of false markers) satisfies at least k clauses in C (corresponding to the at least k pairs of literal
markers that are strips). �

5.2. L-reduction from Ep-Occ-Max-Eq-SAT to MSR-2

We present an L-reduction (f , g, α, β) from Ep-Occ-Max-Eq-SAT to MSR-3 as follows. The function f , given the Ep-Occ-
Max-Eq-SAT instance (X, C), constructs the two genomic maps G1 and G2 as in the NP-hardness reduction. Let k∗ be the
maximum number of clauses in C that can be satisfied by an assignment of X , and let l∗ be the maximum total strip length
of any two subsequences ofG1 andG2, respectively. Since a random assignment of each variable independently to either true
or false with equal probability 1

2 satisfies each disjunctive clause of q literals with probability 1− 1
2q , we have k∗ ≥ 2q−1

2q m.
By Lemma 7, we have l∗ = 2(3n+m+ k∗ + 2). Recall that np = mq. It follows that

l∗ = 2(3n+m+ k∗ + 2) =

6
q
p
+ 2

m+ 2k∗ + 4 ≤

6
q
p
+ 2

2q

2q − 1
+ 2+

4
k∗

k∗.

The function g , given two subsequences of the two genomic maps G1 and G2, respectively, transforms the subsequences
into canonical form as in the proof of Lemma 6, then returns an assignment of X corresponding to the choices of true or false
markers. Let l be the total strip length of the subsequences, and let k be the number of clauses in C that are satisfied by this
assignment. Then k ≥ l/2− 3n−m− 2. It follows that

|k∗ − k| = k∗ − k ≤ (l∗/2− 3n−m− 2)− (l/2− 3n−m− 2) = |l∗ − l|/2.

Let ϵ > 0 be an arbitrary small constant. Note that by brute force we can check whether k∗ < 2/ϵ and, in the affirmative
case, compute an optimal assignment of X that satisfies the maximum number of clauses in C, all in mO(1/ϵ) time, which is
polynomial in m for a constant ϵ. Therefore we can assume without loss of generality that k∗ ≥ 2/ϵ. Then, with the two
constants α = (6 q

p + 2) 2q
2q−1 + 2 + 2ϵ and β = 1/2, both properties (1) and (2) of L-reduction are satisfied. In particular,

for p = 3 and q = 2,

αβ =

3
q
p
+ 1

2q

2q − 1
+ 1+ ϵ = 5+ ϵ.

Berman and Karpinski [8] showed that E3-Occ-Max-E2-SAT is NP-hard to approximate within any constant less than
464
463 =

1
1−1/464 . Thus MSR-2 is NP-hard to approximate within any constant less than

lim
ϵ→0

1
1− (1/464)/(5+ ϵ)

=
1

1− 1/2320
=

2320
2319

= 1.000431

3770 M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774

1
⊂

1
⊃

2
⊂

2
⊃

3
⊂

3
⊃

4
⊂

4
⊃

4
⊂

4
⊃

3
⊂

3
⊃

2
⊂

2
⊃

1
⊂

1
⊃

1
⊂

3
⊂

4
⊂

1
⊃

3
⊃

4
⊃

2
⊂

2
⊃

2
⊂

3
⊂

2
⊃

3
⊃

1
⊂

4
⊂

1
⊃

4
⊃

1
⊂

1
⊃

2
⊂

3
⊂

4
⊂

2
⊃

3
⊃

4
⊃

a

1
⊂

1
⊃

2
⊂

2
⊃

2
⊂

2
⊃

1
⊂

1
⊃

1
⊂

1
⊃

2
⊂

2
⊃

2
⊂

2
⊃

1
⊂

1
⊃

1
⊂

1
⊃

2
⊂

2
⊃

b
Fig. 5. MSR-5 construction for the 3-Dimensional-Matching instance V1 = {v1,1, v1,2}, V2 = {v2,1, v2,2}, V3 = {v3,1, v3,2}, and E = { e1 =
(v1,1, v2,2, v3,1), e2 = (v1,2, v2,1, v3,2), e3 = (v1,1, v2,1, v3,2), e4 = (v1,1, v2,2, v3,2) }. (a) The five genomic maps G→,G←,G1,G2,G3 . (b) The five
subsequences of the genomic maps corresponding to the subset {e1, e2} of pairwise-disjoint hyper-edges.

6. An asymptotic lower bound for MSR-d

In this section, we derive an asymptotic lower bound for approximating MSR-d by an L-reduction from d-Dimensional-
Matching to MSR-(d+ 2).

6.1. NP-hardness reduction from d-Dimensional-Matching toMSR-(d+ 2)

Let E ⊆ V1 × · · · × Vd be a set of n hyper-edges over d disjoint sets Vi of vertices, 1 ≤ i ≤ d. We construct two genomic
maps G→ and G←, and d genomic maps Gi, 1 ≤ i ≤ d, where each map is a permutation of the following 2n distinct markers
all in positive orientation:

• n pairs of edge markers
i
⊂ and

i
⊃, 1 ≤ i ≤ n.

The two genomic maps G→ and G← are concatenations of the n pairs of edge markers with ascending and descending
indices, respectively:

G→ :
1
⊂

1
⊃ · · ·

n
⊂

n
⊃

G← :
n
⊂

n
⊃ · · ·

1
⊂

1
⊃

Each genomic map Gi corresponds to a vertex set Vi = {vi,j | 1 ≤ j ≤ |Vi|}, 1 ≤ i ≤ d, and is represented schematically
as follows:

Gi : · · · ⟨vi,j⟩ · · ·

Here each ⟨vi,j⟩ consists of the edge markers of hyper-edges containing the vertex vi,j, grouped together such that the
left markers appear with ascending indices before the right markers also with ascending indices. This completes the
construction. We refer to Fig. 5(a) for an example.

The following property of our construction is obvious:

Proposition 2. Two hyper-edges in E intersect if and only if the corresponding two pairs of edge markers intersect in one of the
d genomic maps Gi, 1 ≤ i ≤ d.

The following lemma is analogous to Lemma 1:

Lemma 8. In any d+ 2 subsequences of the d+ 2 genomic maps G→,G←,G1, . . . ,Gd, respectively, each strip must be a pair of
edge markers.

Proof. By construction, a strip cannot include two edge markers of different indices because they appear in different orders
in G→ and in G←. �

The following lemma, analogous to Lemmas 2, 5 and 7, establishes the NP-hardness of MSR-d:

Lemma 9. The set E has a subset of k pairwise-disjoint hyper-edges if and only if the d+ 2 genomic maps G→,G←,G1, . . . ,Gd
have d+ 2 subsequences whose total strip length l is at least 2k.

Proof. We first prove the ‘‘only if’’ direction. Suppose that the set E has a subset of at least k pairwise-disjoint hyper-edges.
We will show that the d + 2 genomic maps G→,G←,G1, . . . ,Gd have d + 2 subsequences of total strip length at least
2k. By Proposition 2, the k pairwise-disjoint hyper-edges correspond to k pairs of edge markers that do not intersect each
other in the genomic maps. These k pairs of edge markers induce a subsequence of length 2k in each genomic map. In each
subsequence, the left marker and the right marker of each pair appear consecutively and compose a strip. Thus the total
strip length is at least 2k. We refer to Fig. 5(b) for an example.

M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774 3771

We next prove the ‘‘if’’ direction. Suppose that the d+ 2 genomic maps G→,G←,G1, . . . ,Gd have d+ 2 subsequences of
total strip length at least 2k. Wewill show that the set E has a subset of at least k pairwise-disjoint hyper-edges. By Lemma 1,
each strip of the subsequences must be a pair of edge markers. Thus we obtain at least k pairs of edge markers that do not
intersect each other in the genomic maps. Then, by Proposition 2, the corresponding set of at least k hyper-edges in E are
pairwise-disjoint. �

6.2. L-reduction from d-Dimensional-Matching to MSR-(d+ 2)

We present an L-reduction (f , g, α, β) from d-Dimensional-Matching to MSR-(d + 2) as follows. The function f , given
a set E ⊆ V1 × · · · × Vd of hyper-edges, constructs the d + 2 genomic maps G→,G←,G1, . . . ,Gd as in the NP-hardness
reduction. Let k∗ be the maximum number of pairwise-disjoint hyper-edges in E, and let l∗ be the maximum total strip
length of any d+ 2 subsequences of G→,G←,G1, . . . ,Gd, respectively. By Lemma 9, we have

l∗ = 2k∗.

Choose α = 2, then property (1) of L-reduction is satisfied.
The function g , given d+ 2 subsequences of the d+ 2 genomic maps G→,G←,G1, . . . ,Gd, respectively, returns a subset

of pairwise-disjoint hyper-edges in E corresponding to the pairs of edge markers that are strips of the subsequences. Let
l be the total strip length of the subsequences, and let k be the number of pairwise-disjoint hyper-edges returned by the
function g . Then k ≥ l/2. It follows that

|k∗ − k| = k∗ − k ≤ l∗/2− l/2 = |l∗ − l|/2.

Choose β = 1/2, then property (2) of L-reduction is also satisfied.
We have obtained an L-reduction from d-Dimensional-Matching to MSR-(d + 2) with αβ = 1. Hazan et al. [16]

showed that d-Dimensional-Matching is NP-hard to approximate within Ω(d/ log d). It follows that MSR-d is also NP-hard
to approximate within Ω(d/ log d). This completes the proof of Theorem 1.

7. A polynomial-time 2d-approximation for MSR-d

In this section we prove Theorem 2. We briefly review the two previous algorithms [27,11] for this problem. The first
algorithm for MSR-2 is a simple heuristic due to Zheng et al. [27]:

1. Extract a set of pre-strips from the two genomic maps;
2. Compute an independent set of strips from the pre-strips.

This algorithm is inefficient because the number of pre-strips could be exponential in the sequence length, and furthermore
the problem Maximum-Weight Independent Set in general graphs is NP-hard.

Chen et al. [11] presented a 2d-approximation algorithm for MSR-d. For any d ≥ 2, a d-interval is the union of d disjoint
intervals in the real line, and a d-interval graph is the intersection graph of a set of d-intervals, with a vertex for each
d-interval, and with an edge between two vertices if and only the corresponding d-intervals overlap. The 2d-approximation
algorithm [11] works as follows:

1. Compose a set of d-intervals, one for each combination of d substrings of the d genomic maps, respectively. Assign each
d-interval a weight equal to the length of a longest common subsequence (which may be reversed and negated) in the
corresponding d substrings.

2. Compute a 2d-approximation for Maximum-Weight Independent Set in the resulting d-interval graph using Bar-Yehuda
et al.’s fractional local-ratio algorithm [6].

Let n be the number of markers in each genomic map. Then the number of d-intervals composed by this algorithm is
Θ(n2d) because each of the d genomic maps has Θ(n2) substrings. Consequently the running time of this algorithm can be
exponential if the number d of genomic maps is not a constant but is part of the input. In the following, we show that if
all markers are distinct in each genomic map (as discussed earlier, this is a reasonable assumption in application), then the
running time of the 2d-approximation algorithm can be improved to polynomial for all d ≥ 2. This improvement is achieved
by composing a smaller set of candidate d-intervals in step 1 of the algorithm.

The idea is actually quite simple and has been used many times previously [21,19,10]. Note that any strip of length l > 3
is a concatenation of shorter strips of lengths 2 and 3, for example, 4 = 2 + 2, 5 = 2 + 3, etc. Since the objective is to
maximize the total strip length, it suffices to consider only short strips of lengths 2 and 3 in the genomic maps, and to
enumerate only candidate d-intervals that correspond to these strips. When each genomic map is a signed permutation of
the same n distinct markers, there are at most

n
2

+

n
3

= O(n3) strips of lengths 2 and 3, and for each strip there is a unique

shortest substring of each genomic map that contains all markers in the strip. Thus we compose only O(n3) d-intervals,
and improve the running time of the 2d-approximation algorithm to polynomial for all d ≥ 2. This completes the proof of
Theorem 2.

3772 M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774

8. Inapproximability results for related problems

In this section we prove Theorems 3 and 4.
CMSR-3 and CMSR-4 are APX-hard. For any d, the decision problems of MSR-d and CMSR-d are equivalent. Thus the NP-
hardness of MSR-d implies the NP-hardness of CMSR-d, although the APX-hardness of MSR-d does not necessarily imply
the APX-hardness of CMSR-d. Note that the two problems Max-IS-∆ and Min-VC-∆ complement each other just as the two
problemsMSR-d and CMSR-d complement each other. Thus our NP-hardness reduction fromMax-IS-3 toMSR-3 in Section 4
can be immediately turned into an NP-hardness reduction from Min-VC-3 to CMSR-3.

We present an L-reduction (f , g, α, β) fromMin-VC-3 to CMSR-3 as follows. The function f , given a graph G ofmaximum
degree 3, constructs the three genomic maps G0,G1,G2 as in the NP-hardness reduction in Section 4. Let k∗ be the number
of vertices in a maximum independent set in G, and let l∗ be the maximum total strip length of any three subsequences
of G0,G1,G2, respectively. Also let c∗ be the number of vertices in a minimum vertex cover in G, and let x∗ be the
minimum number of markers that must be deleted to transform the three genomic maps G0,G1,G2 into strip-concatenated
subsequences. Then k∗ + c∗ = n and l∗ + x∗ = 4n. By Lemma 5, we have l∗ = 2(n+ k∗). It follows that

x∗ = 4n− l∗ = 4n− 2(n+ k∗) = 2(n− k∗) = 2c∗.

Choose α = 2, then property (1) of L-reduction is satisfied.
The function g , given three subsequences of the three genomic maps G0,G1,G2, respectively, transforms the

subsequences into canonical form as in the proof of Lemma 4, then returns a vertex cover in the graph G corresponding
to the deleted pairs of vertex markers. Let x be the number of deleted vertex markers, and let c be the number of vertices in
the vertex cover returned by the function g . Then c ≤ x/2. It follows that

|c∗ − c| = c − c∗ ≤ x/2− x∗/2 = |x∗ − x|/2.

Choose β = 1/2, then property (2) of L-reduction is also satisfied.
The L-reduction from Min-VC-3 to CMSR-3 can be obviously generalized:

Lemma 10. Let∆ ≥ 3 and d ≥ 3. If there is a polynomial-time algorithm for decomposing any graph of maximum degree∆ into
d− 1 linear forests, then there is an L-reduction fromMin-VC-∆ to CMSR-d with constants α = 2 and β = 1/2.

Recall that there exist polynomial-time algorithms for decomposing a graph of maximum degree 3 and 4 into at most 2
and 3 linear forests, respectively [2,1,3]. Thus we have an L-reduction from Min-VC-3 to CMSR-3 and an L-reduction from
Min-VC-4 to CMSR-4, with the same parameters α = 2, β = 1/2, and αβ = 1. Chlebík and Chlebíková [12] showed that
Min-VC-3 andMin-VC-4 are NP-hard to approximate within 1.0101215 and 1.0202429, respectively. It follows that CMSR-3
and CMSR-4 are NP-hard to approximate within 1.0101215 and 1.0202429, respectively, too. The lower bound for CMSR-4
extends to CMSR-d for all d ≥ 4. Note that we could use an L-reduction fromMin-VC-3 to CMSR-4 similar to the L-reduction
from Max-IS-3 to MSR-4 in Section 3, but that only gives us a weaker lower bound of 1.0101215 for CMSR-4.
CMSR-2 is APX-hard. Let p = 3 and q ≥ 2. We present an L-reduction (f , g, α, β) from Ep-Occ-Max-Eq-SAT to CMSR-2 as
follows. The function f , given the Ep-Occ-Max-Eq-SAT instance (X, C), constructs the two genomic maps G1 and G2 as in our
NP-hardness reduction in Section 5. As before, let k∗ be the maximum number of clauses in C that can be satisfied by an
assignment of X , and let l∗ be the maximum total strip length of any two subsequences of G1 and G2, respectively. Also let
x∗ be the minimum number of deleted markers. Then l∗+ x∗ is exactly the number of markers in each genomic map, that is,
2(5n+m+qm+2). By Lemma 7, we have l∗ = 2(3n+m+ k∗+2). Thus x∗ = 2(5n+m+qm+2)−2(3n+m+ k∗+2) =
2(2n + qm − k∗). Since a random assignment of each variable independently to either true or false with equal probability
1
2 satisfies each disjunctive clause of q literals with probability 1− 1

2q , we have k∗ ≥ 2q−1
2q m. Recall that np = mq. It follows

that

x∗ = 2(2n+ qm− k∗) = 2

2
q
p
+ q

m− 2k∗ ≤

2

2
q
p
+ q

2q

2q − 1
− 2

k∗.

For p = 3 and q = 2, we can choose α = 2(2 q
p + q) 2q

2q−1 − 2 = 62/9. Then property (1) of L-reduction is satisfied.
The function g , given two subsequences of the two genomicmaps G1 and G2, transforms the subsequences into canonical

form as in the proof of Lemma 6, then returns an assignment of X corresponding to the choices of true or false markers. Let
l be the total strip length of the subsequences, and let x be the number of deleted markers. Let k be the number of clauses in
C that are satisfied by this assignment. Then

|k∗ − k| ≤ |l∗ − l|/2 = |x∗ − x|/2.

Choose β = 1/2, then property (2) of L-reduction is satisfied.
Berman and Karpinski [8] showed that E3-Occ-Max-E2-SAT is NP-hard to approximate within any constant less than

464
463 =

1
1−1/464 . Since αβ = 31/9, CMSR-2 is NP-hard to approximate within any constant less than

1+ (1/464)/(31/9) = 1+ 9/14384 = 1.000625

M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774 3773

An asymptotic lower bound for CMSR-d and a lower bound for CMSR-dwith unbounded d. Chlebík and Chlebíková [12]
showed that for any∆ ≥ 228, Min-VC-∆ is NP-hard to approximate within 7

6 −O(log∆/∆). By the second inequality in (3),
it follows that if ∆ ≤ 227, then f (∆) ≤ ⌈3⌈227/2⌉/2⌉ = 171. Consequently, if f (∆) ≥ 172, then ∆ ≥ 228. By Lemma 10,
there is an L-reduction from Min-VC-∆ to CMSR-(f (∆)+ 1) with α = 2 and β = 1/2. Therefore, for any d ≥ 173, CMSR-d
is NP-hard to approximate within 7

6 − O(log d/d).
The maximum degree ∆ of a graph of n vertices is at most n − 1. Again by the second inequality in (3), we have

f (∆) ≤ ⌈3⌈(n − 1)/2⌉/2⌉. Thus f (∆) is bounded by a polynomial in n. If d is not a constant but is part of the input, then
a straightforward generalization of the L-reduction from Min-VC-3 to CMSR-3 as in Lemma 10 gives an L-reduction from
Minimum Vertex Cover to CMSR-(f (∆)+ 1) with α = 2 and β = 1/2. Dinur and Safra [14] showed that Minimum Vertex
Cover is NP-hard to approximate within any constant less than 10

√
5−21 = 1.3606 It follows that if d is not a constant

but is part of the input, then CMSR-d is NP-hard to approximate within any constant less than 10
√
5 − 21 = 1.3606

This completes the proof of Theorem 3.
Inapproximability of δ-gap-MSR-d and δ-gap-CMSR-d. It is easy to check that all instances of MSR-d and CMSR-d in our
constructions for Theorems 1 and 3 admit optimal solutions in canonical formwithmaximumgap 2, except for the following
two cases:

1. In the L-reduction from Ep-Occ-Max-Eq-SAT to MSR-2 and CMSR-2, a strip that is a pair of literal markers has a gap of
q− 1, which is larger than 2 for q ≥ 4.

2. In the L-reduction from d-Dimensional-Matching to MSR-(d + 2), a strip that is a pair of edge markers may have an
arbitrarily large gap if it corresponds to one of many hyper-edges that share a single vertex.

To extend our results in Theorems 1 and 3 to the corresponding results in Theorem 4, the first case does not matter
because we set the parameter q to 2 when deriving the lower bounds for MSR-2 and CMSR-2 from the lower bound for
E3-Occ-Max-E2-SAT.

The second case is more problematic, and we have to use a different L-reduction to obtain a slightly weaker asymptotic
lower bound for δ-gap-MSR-d. Trevisan [25] showed that Max-IS-∆ is NP-hard to approximate within ∆/2O(

√
log∆). By

Lemma 3, there is an L-reduction from Max-IS-∆ to δ-gap-MSR-(f (∆) + 2) with αβ = 1. By the two inequalities in (3),
we have f (∆) + 2 = Θ(∆). Thus δ-gap-MSR-d is NP-hard to approximate within d/2O(

√
log d). This completes the proof of

Theorem 4.

9. Concluding remarks

A strip of length l has l − 1 adjacencies between consecutive markers. In general, k strips of total length l have l − k
adjacencies. Besides the total strip length, the total number of adjacencies in the strips is also a natural objective function
of MSR-d [11]. It can be checked that our L-reductions for MSR-d and δ-gap-MSR-d still work even if the objective function
is changed from the total strip length to the total number of adjacencies in the strips. The only effect of this change is that
the constant α is halved and correspondingly the constant β is doubled (from 1/2 to 1). Since the product αβ is unaffected,
Theorem 1 and the second part of Theorem 4 remain valid. For Theorem 2, we can adapt the 2d-approximation algorithm
for maximizing the total strip length to a (2d+ ϵ)-approximation algorithm for maximizing the total number of adjacencies
in strips, for any constant ϵ > 0. The only change in the algorithm is to enumerate all d-intervals of strip lengths at most
Θ(1/ϵ), instead of 2 and 3. We note that the small difference between the two objective functions, total length versus total
number of adjacencies, has led to difference in the complexities of two other bioinformatics problems [21,19]: For RNA
secondary structure prediction, the problem Maximum Stacking Base Pairs (MSBP) maximizes the total length of helices,
and the problem Maximum Base Pair Stackings (MBPS) maximizes the total number of adjacencies in helices. On implicit
input of base pairs determined by pair types, MSBP is polynomially solvable, but MBPS is NP-hard and admits a polynomial-
time approximation scheme [21]; on explicit input of base pairs, MSBP and MBPS are both NP-hard, and admit constant
approximations with factors 5/2 and 8/3, respectively [19].

In our Theorems 1 and 3, we have chosen to display explicit lower bounds for MSR-2 and CMSR-2, despite the fact
that they are rather small and unimpressive. As commented by M. Karpinski after the author’s ISAAC presentation, it
may be possible to improve the lower bound for MSR-2 by an L-reduction from another problem. For example, Berman
and Karpinski [8] proved that E3-Occ-Max-E2-SAT is APX-hard to approximate within any constant less than 464

463 by an
L-reduction from Ed-Occ-Ek-LIN-2, and proved that Ed-Occ-Ek-LIN-2 is NP-hard to approximate within some other constant
by an L-reduction from yet another problem, and so on. By constructing an L-reduction directly from Ed-Occ-Ek-LIN-2 to
MSR-2, say, we might obtain a better lower bound. We were not engaged in such pursuits in this paper. Since satisfiability
problems arewell-known,we chose an L-reduction from E3-Occ-Max-E2-SAT toMSR-2 for the sake of a gentle presentation,
and we made no effort in optimizing the constants.

We proved Theorem 4 by extending our proofs of Theorems 1 and 3 with minimal modifications. We note that the δ-gap
constraint actually makes it easier to prove the APX-hardness of δ-gap-MSR-d and δ-gap-CMSR-d than to prove the APX-
hardness of MSR-d and CMSR-d. For example, our E3-Occ-Max-E2-SAT constructions for MSR-2 and CMSR-2 can be much
simplified to obtain better approximation lower bounds for δ-gap-MSR-d and δ-gap-CMSR-d. We omit the details and refer
to [10] for more results on these restricted variants. On the other hand, the correctness of our reductions does require gaps

3774 M. Jiang / Theoretical Computer Science 412 (2011) 3759–3774

of at least 2 markers. Thus our proofs do not imply the APX-hardness of 1-gap-MSR-d or 1-gap-CMSR-d. Consistent with our
results, Bulteau et al. [10] proved that δ-gap-MSR-2 is APX-hard for all δ ≥ 2 and is NP-hard for δ = 1.

A curious concept called paired approximationwas recently introduced by Eppstein [15]. For certain problems on the same
input, say Clique and Independent Set on the same graph, sometimes we would be happy to find a good approximation to
either one, if not both. Inapproximability results for pairs of problems are often incompatible: the hard instances for one
problem are disjoint from the hard instances for the other problem. As a result, an approximation algorithm may find a
solution to one or the other of two problems on the same input that is better than the known inapproximability bounds
for either individual problem. Note that our inapproximability results for MSR-2 and CMSR-2 are compatible because they
are obtained from the same reduction from E3-Occ-Max-E2-SAT. Thus even as a paired approximation problem, (MSR-2,
CMSR-2) is still APX-hard. This is the first inapproximability result for a paired approximation problem in bioinformatics.

Postscript. The APX-hardness results for MSR-2 and MSR-3 in Theorem 1 was obtained in December 2008. The author was
later informed by Binhai Zhu in January 2009 that Lusheng Wang and he had independently and almost simultaneously
proved a weaker result that MSR-2 is NP-hard [26].

References

[1] J. Akiyama, V. Chvátal, A short proof of the linear arboricity for cubic graphs, Bull. Liber. Arts & Sci. NMS (2) (1981) 1–3.
[2] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs III: cyclic and acyclic invariants, Mathematica Slovaca 30 (1980) 405–417.
[3] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs IV: linear arboricity, Networks 11 (1981) 69–72.
[4] P. Alimonti, V. Kann, Some APX-completeness results for cubic graphs, Theoretical Computer Science 237 (2000) 123–134.
[5] N. Alon, The linear arboricity of graphs, Israel Journal of Mathematics 62 (1988) 311–325.
[6] R. Bar-Yehuda, M.M. Halldórsson, J.(S.) Naor, H. Shachnai, I. Shapira, Scheduling split intervals, SIAM Journal on Computing 36 (2006) 1–15.
[7] P. Berman, M. Karpinski, On some tighter inapproximability results, in: Proceedings of the 26th International Colloquium on Automata, Languages

and Programming, ICALP’99, 1999, LNCS, vol. 1644, pp. 200–209.
[8] P. Berman, M. Karpinski, Improved approximation lower bounds on small occurrence optimization, Electronic Colloquium on Computational

Complexity (2003) Report TR03-008.
[9] L. Bulteau, G. Fertin, M. Jiang, I. Rusu, Tractablity and approximability of maximal strip recovery, in: Proceedings of the 22nd Annual Symposium on

Combinatorial Pattern Matching, CPM’11, 2011 (in press).
[10] L. Bulteau, G. Fertin, I. Rusu, Maximal strip recovery problem with gaps: hardness and approximation algorithms, in: Proceedings of the 20th

International Symposium on Algorithms and Computation, ISAAC’09, 2009, LNCS, vol. 5878, pp. 710–719.
[11] Z. Chen, B. Fu, M. Jiang, B. Zhu, On recovering syntenic blocks from comparative maps, Journal of Combinatorial Optimization 18 (2009) 307–318.
[12] M. Chlebík, J. Chlebíková, Complexity of approximating bounded variants of optimization problems, Theoretical Computer Science 354 (2006)

320–338.
[13] V. Choi, C. Zheng, Q. Zhu, D. Sankoff, Algorithms for the extraction of synteny blocks from comparative maps, in: Proceedings of the 7th International

Workshop on Algorithms in Bioinformatics, WABI’07, 2007, pp. 277–288.
[14] I. Dinur, S. Safra, On the hardness of approximating minimum vertex cover, Annals of Mathematics 162 (2005) 439–485.
[15] D. Eppstein, Paired approximation problems and incompatible inapproximabilities, in: Proceedings of the 21st Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA’10, 2010, pp. 1076–1086.
[16] E. Hazan, S. Safra, O. Schwartz, On the complexity of approximating k-set packing, Computational Complexity 15 (2006) 20–39.
[17] M. Jiang, Inapproximability ofmaximal strip recovery, in: Proceedings of the 20th International SymposiumonAlgorithms andComputation, ISAAC’09,

2009, LNCS, vol. 5878, pp. 616–625.
[18] M. Jiang, Inapproximability of maximal strip recovery: II, in: Proceedings of the 4th International Frontiers of Algorithmics Workshop, FAW’10, 2010,

LNCS, vol. 6213, pp. 53–64.
[19] M. Jiang, Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots, IEEE/ACM Transactions on Computational

Biology and Bioinformatics 7 (2010) 323–332.
[20] M. Jiang, On the parameterized complexity of some optimization problems related to multiple-interval graphs, Theoretical Computer Science 411

(2010) 4253–4262.
[21] R.B. Lyngsø, Complexity of pseudoknot prediction in simple models, in: Proceedings of the 31st International Colloquium on Automata, Languages

and Programming, ICALP’04, 2004, pp. 919–931.
[22] B. Manthey, Non-approximability of weighted multiple sequence alignment for arbitrary metrics, Information Processing Letters 95 (2005) 389–395.
[23] H. Nagashima, K. Yamazaki, Hardness of approximation for non-overlapping local alignments, Discrete Applied Mathematics 137 (2004) 293–309.
[24] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, Journal of Computer and System Sciences 43 (1991)

425–440.
[25] L. Trevisan, Non-approximability results for optimization problems on bounded degree instances, in: Proceedings of the 33rd ACM Symposium on

Theory of Computing, STOC’01, 2001, pp. 453–461.
[26] L. Wang, B. Zhu, On the tractability of maximal strip recovery, in: Proceedings of the 6th Annual Conference on Theory and Applications of Models of

Computation, TAMC’09, 2009, LNCS, vol. 5532, pp. 400–409.
[27] C. Zheng, Q. Zhu, D. Sankoff, Removing noise and ambiguities from comparative maps in rearrangement analysis, IEEE/ACM Transactions on

Computational Biology and Bioinformatics 4 (2007) 515–522.
[28] D. Zhu, L. Wang, On the complexity of unsigned translocation distance, Theoretical Computer Science 352 (2006) 322–328.

	Inapproximability of maximal strip recovery
	Introduction
	Preliminaries
	MSR-4 is APX-hard
	NP-hardness reduction from Max-IS-3 to MSR-4
	L-reduction from Max-IS-3 to MSR-4

	MSR-3 is APX-hard
	NP-hardness reduction from Max-IS-3 to MSR-3
	L-reduction from Max-IS-3 to MSR-3

	MSR-2 is APX-hard
	NP-hardness reduction from Ep-Occ-Max-Eq-SAT to MSR-2
	L-reduction from Ep-Occ-Max-Eq-SAT to MSR-2

	An asymptotic lower bound for MSR-d
	NP-hardness reduction from d-Dimensional-Matching to MSR-(d+2)
	L-reduction from d-Dimensional-Matching to MSR-(d+2)

	A polynomial-time 2d-approximation for MSR-d
	Inapproximability results for related problems
	Concluding remarks
	References

