2,803 research outputs found

    The average specific forced radiation wave impedance of a finite rectangular panel

    Get PDF
    The average specific forced radiation wave impedance of a finite rectangular panel is of importance for the prediction of both sound insulation and sound absorption. In 1982, Thomasson published numerical calculations of the average specific forced radiation wave impedance of a square of side length 2e for wave number k in half octave steps of ke from 0.25 to 64. Thomasson's calculations were for the case when the forced bending wave number kb was less than or equal to k. Thomasson also published approximate formulas for values of ke above and below the published results. This paper combines Thomasson's high and low frequency formulas and compares this combined formula with Thomasson's numerical calculations. The real part of the approximate formula is between 0.7 dB higher and -1 dB lower than the numerical calculations. The imaginary part of the approximate formula is between 2.3 dB higher and -2.6 dB lower than the numerical calculations. This paper also gives approximate formulas for the case when kb is greater than or equal to k. The differences are between 0.8 and -1.2 dB for the imaginary part and between 6.2 and -2.4 dB for the real part

    The acoustic radiation impedance of a rectangular panel

    Get PDF
    This paper extends the definition of the one sided radiation impedance of a panel mounted in an infinite rigid baffle which was previously used by the authors so that it can be applied to all transverse velocity wave types on the panel rather than just to the possibly forced travelling plane transverse velocity waves considered previously by the authors. For the case of travelling plane waves on a rectangular panel with anechoic edge conditions, and for the case of standing waves on a rectangular panel with simply supported edge conditions, the equations resulting from one of the standard reductions from quadruple to double integrals are given. These double integral equations can be reduced to single integral equations, but the versions of these equations given in the literature did not always converge when used with adaptive integral routines and were sometimes slower than the double integral versions. This is because the terms in the integrands in the existing equations have singularities. Although these singularities cancel, they caused problems for the adaptive integral routines. This paper rewrites these equations in a form which removes the singularities and enables the integrals in these equations to be evaluated with adaptive integral routines. Approximate equations for the azimuthally averaged one sided radiation impedance of a rectangular panel mounted in an infinite baffle are given for all the cases considered in this paper and the values produced by these equations are compared with numerical calculations

    Approximate equations for the radiation impedance of a rectangular panel

    Get PDF
    The authors have previously published approximate formulae for the average one sided specific radiation wave impedance of a finite rectangular panel mounted in a rigid infinite baffle. The panel's transverse vibration was due to a (possibly forced) two dimensional bending plane wave propagating in the panel without reflection at the edges of the panel. The average was over all the surface area of the panel and over all possible azimuthal angles of propagation direction. The radiation from waves propagating in different directions was assumed to be uncorrelated. These approximate formulae were derived from the 1982 research of Thomasson whose approximate formulae only covered the high and low frequency regions and not the mid frequency region. This paper presents more accurate versions of some of the approximate formulae. When the bending wave number is larger than the wave number of sound, the real part of the impedance is smaller than that for the case studied by Maidanik and Leppington. This is because correlated reflections are not included the case analyzed in this paper. When the bending wave number is smaller than or equals the wave number of sound, the real part of the impedance is the same for both cases

    Approximate formulae for the average one sided specific radiation wave impedance of a finite rectangular panel

    Get PDF
    The authors have previously published approximate formulae for the average one sided specific radiation wave impedance of a finite rectangular panel mounted in a rigid infinite baffle. The panel's transverse vibration was due to a (possibly forced) two dimensional bending plane wave propagating in the panel without reflection at the edges of the panel. The average was over all the surface area of the panel and over all possible azimuthal angles of propagation direction. The radiation from waves propagating in different directions was assumed to be uncorrelated. These approximate formulae were derived from the 1982 research of Thomasson whose approximate formulae only covered the high and low frequency regions and not the mid frequency region. This paper presents more accurate versions of some of the approximate formulae. When the bending wave number is larger than the wave number of sound, the real part of the impedance is smaller than that for the case studied by Maidanik and Leppington. This is because correlated reflections are not included the case analyzed in this paper. When the bending wave number is smaller than or equals the wave number of sound, the real part of the impedance is the same for both cases

    Socioeconomic deprivation and surgical outcomes: ISOS and VISION-UK sub-study (Statistical Analysis Plan)

    Get PDF
    In this paper, we aim to determine if socioeconomic deprivation in England is associated with outcomes after surgery: mortality, in-hospital complications at 30 days, and hospital length of stay. We will also identify clinical factors associated with social deprivation and assess whether adjustment for these factors modify the effect of socioeconomic deprivation on outcomes for a range of surgical categories

    The Interaction of Phylogeny and Community Structure: Linking the Community Composition and Trait Evolution of Clades

    Get PDF
    Aim Community phylogenetic studies use information about the evolutionary relationships of species to understand the ecological processes of community assembly. A central premise of the field is that the evolution of species maps onto ecological patterns, and phylogeny reveals something more than species traits alone about the ecological mechanisms structuring communities, such as environmental filtering, competition, and facilitation. We argue, therefore, that there is a need for better understanding and modelling of the interaction of phylogeny with species traits and community composition. Innovation We outline a new approach that identifies clades that are ecophylogenetically clustered or overdispersed and assesses whether those clades have different rates of trait evolution. Ecophylogenetic theory would predict that the traits of clustered or overdispersed clades might have evolved differently, in terms of either tempo (fast or slow) or mode (e.g., under constraint or neutrally). We suggest that modelling the evolution of independent trait data in these clades represents a strong test of whether there is an association between the ecological co‐occurrence patterns of a species and its evolutionary history. Main conclusions Using an empirical dataset of mammals from around the world, we identify two clades of rodents whose species tend not to co‐occur in the same local assemblages (are phylogenetically overdispersed) and find independent evidence of slower rates of body mass evolution in these clades. Our approach, which assumes nothing about the mode of species trait evolution but instead seeks to explain it using ecological information, presents a new way to examine ecophylogenetic structure

    Critical care admission following elective surgery was not associated with survival benefit: prospective analysis of data from 27 countries

    Get PDF
    PURPOSE: As global initiatives increase patient access to surgical treatments, there is a need to define optimal levels of perioperative care. Our aim was to describe the relationship between the provision and use of critical care resources and postoperative mortality. METHODS: Planned analysis of data collected during an international 7-day cohort study of adults undergoing elective in-patient surgery. We used risk-adjusted mixed-effects logistic regression models to evaluate the association between admission to critical care immediately after surgery and in-hospital mortality. We evaluated hospital-level associations between mortality and critical care admission immediately after surgery, critical care admission to treat life-threatening complications, and hospital provision of critical care beds. We evaluated the effect of national income using interaction tests. RESULTS: 44,814 patients from 474 hospitals in 27 countries were available for analysis. Death was more frequent amongst patients admitted directly to critical care after surgery (critical care: 103/4317 patients [2%], standard ward: 99/39,566 patients [0.3%]; adjusted OR 3.01 [2.10–5.21]; p < 0.001). This association may differ with national income (high income countries OR 2.50 vs. low and middle income countries OR 4.68; p = 0.07). At hospital level, there was no association between mortality and critical care admission directly after surgery (p = 0.26), critical care admission to treat complications (p = 0.33), or provision of critical care beds (p = 0.70). Findings of the hospital-level analyses were not affected by national income status. A sensitivity analysis including only high-risk patients yielded similar findings. CONCLUSIONS: We did not identify any survival benefit from critical care admission following surgery
    corecore