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The average specific forced radiation wave impedance of a finite rectangular panel is of 

importance for the prediction of both sound insulation and sound absorption. In 1982, 

Thomasson published numerical calculations of the average specific forced radiation wave 

impedance of a square of side length 2e for wave number k in half octave steps of ke from 0.25 

to 64. Thomasson’s calculations were for the case when the forced bending wave number kb was 

less than or equal to k. Thomasson also published approximate formulae for values of ke above 

and below the published results. This paper combines Thomasson’s high and low frequency 

formulae and compares this combined formula with Thomasson’s numerical calculations. The 

real part of the approximate formula is between 0.7dB higher and -1dB lower than the numerical 

calculations. The imaginary part of the approximate formula is between 2.3dB higher and -2.6dB 

lower than the numerical calculations. This paper also gives approximate formulae for the case 

when kb is greater than or equal to k. The differences are between 0.8 and -1.2dB for the 

imaginary part and between 6.2 and -2.4dB for the real part. 
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I. INTRODUCTION 

The average specific radiation wave impedance of one side of a finite rectangular panel 

mounted in an infinite rigid baffle is of importance for the prediction of sound insulation, sound 

absorption and sound scattering. It occurs naturally when variational techniques are used to solve 

these phenomena (Thomasson, 1980; 1982; Allard and Atalla, 2009; Brunskog, 2012; Jeong, 

2013). Thus, this average value can be viewed as the one sided specific radiation wave 

impedance fluid loading on a two dimensional transverse velocity wave which is propagating on 

a finite plane surface mounted in an infinite rigid baffle. The specific radiation wave impedance 

is the ratio of the radiated complex number sound pressure at a point on the surface of a radiating 

panel to the complex number transverse velocity of the panel at the same point. Because the 

specific radiation wave impedance will vary with position on the finite rectangular panel, the 

average is taken over the radiating surface of the panel. The specific radiation wave impedance 

may also vary with the azimuthal angle of propagation of the transverse velocity wave in the 

finite rectangular panel and in many situations the average will also be taken over azimuthal 

angle. For a transverse velocity wave in the panel which is forced by an incoming sound wave, 

the average for diffuse field excitation is also of interest. 

Thomasson (1982) published numerical calculations of the average specific forced 

radiation wave impedance of a square of side length 2e for a forcing sound wave number k in 

half octave steps of ke from 0.25 to 64 and in 15° steps of the incident angle of the forcing sound 

wave from 0° to 90°. Thomasson (1982) also published approximate formulae for values of ke 

above and below his published numerical results. In this case, the bending wave number kb of the 

forced transverse velocity wave propagating in the finite rectangular panel is less than the wave 

number k of sound in the medium into which the panel is radiating. Thomasson’s numerical 
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results and his approximate formulae for a square are given in Table I of Thomasson (1982). 

Because this publication of Thomasson can be hard to obtain, Thomasson’s Table I is reproduced 

as Table I in Jeong (2013). Note that the e used by Thomasson and Jeong is the length of the side 

of the square and is thus twice the value of the e used in this paper which is the half length of the 

side of the square. Thomasson’s and Jeong’s imaginary parts of the impedance are the opposite 

sign to the imaginary parts of the impedance in this paper because of their choice of a different 

complex sinusoidal variation with time than that used in this paper. 

The real part of average specific radiation wave impedance of a panel, normalized by 

being divided by the characteristic impedance of the medium into which it is radiating, is equal 

to the radiation efficiency of the panel. There have been a number of authors who have studied 

the forced radiation efficiency of a finite rectangular panel. Gösele (1953) derived the radiation 

efficiency for a finite panel. He also included panel wavelengths which are less than the 

wavelength of the sound in the medium for which the infinite panel model predicts zero radiation 

efficiency. He gave approximate formulae for certain ranges of parameters and graphed results of 

numerical calculations for three different sizes of panels. Sato (1973) gave the results of much 

more extensive numerical calculations in both tabular and graphical form for the forced wave 

case where the panel wavelength is longer than the wavelength in air. Sato also numerically 

calculated the diffuse field forced radiation efficiency averaged over all possible directions of 

sound incidence. 

Rindel (1975) used Sato’s numerical results for the forced radiation efficiency in his 

theory of sound insulation as a function of angle of incidence and gave Sato’s results in an 

English language publication. According to Novak (1992), Lindblad (1973) provided an 

approximate formula for the radiation efficiency at high frequencies based on Gösele’s results. 
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Lindblad (1985) gave a simpler approximation which could be integrated over all angles of 

incidence. He also extended the integrated formula to low frequencies. Rindel (1993a) presented 

a slightly more complicated version of formula from Lindblad (1973), with constants which are 

selected to provide good agreement with Sato’s tabulated radiation efficiencies. Rindel’s formula 

also extends Lindblad’s formula to low frequencies. This formula of Rindel is too complicated to 

be integrated easily by analytic means. However Rindel (1993b) gave an approximate formula 

for the diffuse field forced radiation efficiency. Ljunggren (1991) repeated Sato’s numerical 

calculations using a two dimensional model and obtained agreement “well within 0.5dB” for 

both as a function of angle of incidence and averaged over all angles of incidence. Novak (1995) 

performed even more extensive three dimensional calculations than Sato. Davy (2009) gave even 

better approximations for the forced radiation efficiency which could also be analytically 

integrated to calculate the diffuse field forced radiation efficiency. Davy also extended most of 

the previous models so that they covered the whole frequency range and compared them with 

Sato’s numerically calculated values for the forced radiation efficiency. Approximate formulae 

for the radiation efficiency of a panel with freely propagating waves were derived by Lyon and 

Maidanik (1962), Maidanik (1962; 1975) and Leppington et al. (1982). None of the above papers 

include approximate formulae for the imaginary part of the average specific radiation wave 

impedance which cover the whole range of parameters. 

The aim of this paper is to combine and extend the approximate equations derived by 

Thomasson (1982) so that they can also be used in the range covered by his numerically 

calculated and tabulated values which is not covered by his approximate formulae. The results 

given by these combined and extended equations are compared to the tabulated values of 

Thomasson (1982). The results of Thomasson (1982) are extended by the development of 
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approximate formulae for the case where kb is greater than k. These approximate formulae are 

compared to numerically calculated values. 

In this paper, the sinusoidal variation with time is assumed to be proportional to j te  , 

where   is the angular frequency, t  is the time, j  is the square root of -1 and e  is Euler’s 

number. e  is also used to define half the typical distance across the panel [see Eq. (41)], but this 

should not create any confusion. It should be noted that the assumption of j te   for the sinusoidal 

variation with time gives the opposite sign for the imaginary part of the impedance. The 

impedances in this paper are normalised by dividing by the characteristic impedance of the fluid 

medium cZ , which is the product of the ambient density of the fluid medium 0  and the speed 

of sound in the fluid medium c . 

The geometry considered in this paper is shown in FIG. 1. An infinite one dimensional 

(either forced or unforced) sinusoidal bending wave with bending wave number bk  travelling in 

an infinite isotopic panel immersed in a fluid medium with freely propagating wave number k  

has a one sided normalised specific radiation wave impedance z  given by (Cremer et al., 2005) 

 

   

 

2 2

2 2

1/ 1 / 1/ 1 1/ cos  if 

                                                               if 

/ / 1 / 1                    if 

b b

b

b b

k k k k

z k k

j k k j k k

 



     



  


   

, (1) 

where 

  sinbk

k
    (2) 

and 

  2arcsin( ) arccos 1      (3) 
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is the angle of incidence in radians of an incident plane wave. This is defined as the angle 

between the normal of the panel and the direction of travel of the incident infinite plane wave 

with wave number k  in the fluid medium. This incident plane wave produces a forced bending 

wave of wave number bk  in the panel. 

The first line of Eq. (1) suggests for a bending wave, forced by an incident plane wave in 

the fluid medium, on a finite panel whose dimensions are large compared to the wavelength of 

sound in the fluid medium and which is mounted in an infinite baffle, that the real part of the 

average normalised specific wave impedance will be approximately  1/ cos   and that the 

imaginary part will be close to zero, except for values of the incident angle which are close to 

grazing incidence ( / 2  radians or 90°). This suggestion is correct. 

The third line of Eq. (1) correctly suggests that the real part of the normalised specific 

radiation wave impedance of a freely propagating bending wave on a finite panel below the 

critical frequency of the panel in the fluid medium is close to zero and that the imaginary part is 

a mass like loading. 

The normalised specific radiation impedance of a uniformly sinusoidally vibrating sphere 

of radius r  is (Cremer et al., 2005), 

 
 

   

2

2 2
1 1

kr kr
z j

kr kr
 

 
. (4) 

By symmetry, Eq. (4) also applies for a uniformly sinusoidally vibrating hemisphere of radius r  

whose base is on an infinite rigid baffle. The real part of Eq. (4) also applies to panels or 

openings which are small compared to the wavelength of sound, are mounted in an infinite baffle 

and are vibrating uniformly (the angle of incidence of the forcing wave in the fluid medium   is 

zero) if the area of the hemisphere is equal to the area of the panel or opening. Applying the 
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same approach to the imaginary part produces the correct qualitative behaviour, but the constant 

in the equation derived from Eq. (4) by applying this method needs to be modified to produce the 

correct quantitative behaviour. 

The first line of Eq. (1) and the real part of Eq. (4) also correctly suggest that the average 

normalised specific acoustic wave impedance for a uniformly sinusoidally vibrating panel or 

opening mounted in an infinite baffle tends to 1 as ke  tends to infinity. The uniform vibration 

means that 0bk  , 0   and 0  . 

Eqs. (1) - (4) give a semi-quantitative understanding of the average specific radiation 

wave impedance of a finite size rectangular panel mounted in an infinite rigid baffle. The aim of 

this paper is to develop and assess accurate approximations of the specific radiation wave 

impedance of a finite sized panel. These approximations will provide a more quantitative 

understanding of the specific radiation wave impedance. 

II. AVERAGE SPECIFIC RADIATION IMPEDANCE 

Consider a plane surface area S  whose area is also denoted by S , mounted in an infinite 

rigid plane baffle in the x-y plane 0z  , in which a two dimensional plane transverse velocity 

wave is propagating. The transverse velocity of the wave in the positive z-axis direction is 

 0 0 0( ) exp( . )bu u j r k r , (5) 

where 0 0 0 0( , , )x y zr  is the position on the surface S , ( , ,0)b x yk kk  is the wave number vector 

of the wave and 0u  is the complex amplitude of the wave. The sound pressure in the fluid 

medium on the positive z side of the baffle at position ( , , )x y zr  is given by the Rayleigh 

integral [See (Fahy, 1985), Eq. (2.4)] 

    0 0 0( ) ,c

S

p jkZ g u d r r r r r  (6) 
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where g  is the Green’s function for a point source on an infinite rigid baffle which is given by 

  0

exp( )
,

2

jkR
g

R





r r  (7) 

where 

      
2 2 2

0 0 0 0R x x y y z z       r r  (8) 

and k  is the wave number in the fluid medium on the positive z side of the baffle. 

The normalised specific acoustic wave impedance at r  on the surface S  is 

  
 

   0 0 0

( )
, exp .b

c S

p
z jk g j d

Z u
    

r
r r r k r r r

r
. (9) 

The average normalised specific acoustic wave impedance across the surface area S  is 

    0 0 0, exp .b

S S

jk
z g j d d

S
     r r k r r r r . (10) 

There are two main ways of reducing this quadruple integral to a double integral when S  

is the rectangle given by 

 ,  ,  0x a y b z   . (11) 

Note that a and b are half the lengths of the sides of the rectangle while many authors use them 

as the full lengths of the sides of the rectangle. Similarly the e in this paper [see Eq. (41)] is half 

of the e of Thomasson (1982). The first method for undertaking this reduction is presented in 

appendix A of Li and Gibeling (2000) and Appendix 12.A of Allard and Atalla (2009). As 

Eq. (10) only depends on the difference 0r r , it can be reduced to Eq. (64) of Brunskog (2012) 

and Eq. (12.A.11) of Allard and Atalla (2009) as shown in the following: 

       
2 2

2 2

2 20 0
cos cos 2 2

2

jk
a b

x y

jk e
z k k a b d d

ab

 

     
  

 

  


  , (12) 
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where κ = x – x' and τ = y – y' are the global co-ordinate transformations used to reduce the 

integral. Note that the 2r  in Eqs. (63 ) and (64) from Brunskog (2012) should be 2  and the k in 

the third line above Eq. (63) from Brunskog Jeong, 2013(2012) should be κ. Note that the 

function  , 'nF u u from Allard and Atalla (2009) is only correct when the forcing plane wave is 

normally incident. In their notation, it should read as follows: 

  
    'cos sin

, ' cos cos
2 2

t x t x

n

k L k L u
F u u u

r

    
    

   
. (13) 

In the function  , 'K u u  in their Eq.  (12.A.8), the argument of the exponential function should 

have a minus sign in front of it. The lower limit of the last integral in their Eq. (12.A.7) and the 

last integral on the left hand side of their Eq. (12.A.9) should be 2 u  rather than u . 

The real part of Eq. (12) is 

          
2

2 2
2 2

0 0
Re cos cos sinc 2 2

2

a b

x y

k
z k k k a b d d

ab
       


     ,(14) 

where 

  
 sin

sinc
x

x
x

 . (15) 

It should be noted that this is different from the definition of the sinc function in MATLAB. 

MATLAB defines its sinc function as  sinc x  in terms of the sinc function defined in Eq. (15). 

The imaginary part of Eq. (12) is 

      
 

  

2 2

2 2

2 20 0

cos
Im cos cos 2 2

2

a b

x y

kk
z k k a b d d

ab

 
     

  


  


  . (16) 

 which has a singularity at 0   . It was found that MATLAB’s adaptive integration routines 

cope reasonably well with the one point singularity. 
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The other way of reducing the quadruple integral is to express the Green’s function in 

terms of its Fourier transform (Thomasson, 1982). According to Eq. (7.3.14) of Morse and 

Ingard (1968), the Green’s function of a point source on an infinite rigid plane baffle can be 

written as 

  
 

0
0 3 2 2

exp[ .( )]2
,

2

j
g d

K k








K r r

r r K , (17) 

where the factor of 2 in front of the triple integral has been included because the point sound 

source is on the infinite rigid plane baffle. K is defined as 

  , ,x y zK K KK  (18) 

and 

 
22 2 2 2

x y zK K K K   K . (19) 

Using Eq. (17) in Eq. (10) and integrating with respect to 0 0,  ,  ,   and zK x x y y  inside the 

two remaining integrals gives (Thomasson, 1982) 

 
   2 2

2 2

sinc sinc

1

x x y y

x y

x y

a k k b k kka kb
z d d

 
 

   

 

 

      
 

  . (20) 

It should be noted that the correct sign of the square root in Eq. (20) has to be chosen in order to 

obtain the correct sign for real and imaginary parts of the impedance. This choice of sign may be 

different on the two sides of the singularity which occurs on the unit circle 
2 2 1x y   . 

The real part of the impedance is obtained by calculating the integral in Eq. (20) over 

the unit disc 
2 2 1x y   . Using circular coordinates and expressing the radius as a sine function 

removes the singularity on the unit circle 
2 2 1x y   . Following Thomasson (1982), the 

following substitution is made: 
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    ' ' ' ', cos sin ,sin sinx y                     . (21) 

This gives 

 
    

  

' '

' '

2 /2

2 ' '

0 0

2 ' ' ' ' '

Re sinc sin cos

sinc sin sin sin

x

y

ka kb
z a k k

b k k d d

   

 

 
 

    

 

 

        

           

 
. (22) 

Because the real part of the average normalised specific acoustic wave impedance is the 

radiation efficiency, Eq. (22) can also be derived by calculating the acoustic power radiated by 

the rectangle across a very large hemisphere centred on the centre of the rectangle and in 

conjunction with the infinite rigid baffle containing the rectangle enclosing the side of the 

rectangle whose radiation is being calculated (Sato, 1973). 

The imaginary part of the impedance is obtained by calculating the integral in Eq. (20) 

over the area 
2 2 1x y    outside of the unit disc. The radius can be expressed as the inverse of a 

sine function in order to change the infinite radial limit to a finite limit. It should it noted that this 

is not absolutely essential as some of the MATLAB adaptive integration routines can use infinite 

limits, but it does simplify the calculations in MATLAB. The following substitution is made: 

    ' ' ' ', cos / sin ,sin / sinx y                     . (23) 

This gives 

 
    

  

' '

' '

2 /2

2 ' '

0 0

2 ' ' 2 ' ' '

Im (sinc cos / sin

sinc sin / sin / sin )

x

y

ka kb
z a k k

b k k d d

   

 

 
 

    

 

 

        

           

 
. (24) 

The singularity at ' 0   for all values of '  means that MATLAB’s adaptive integration 

routines do struggle. It is often necessary to increase the maximum number of iterations or 
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decrease the precision. As observed by Brunskog (2012), Eq. (12) is much more efficient 

numerically than Eqs. (22) and (24). 

In order to calculate the total average specific wave impedance, the wave impedance must 

be integrated across all azimuthal angles and all angles of incidence. To allow this calculation to 

be performed first let  bk   be the wave number of the plane transverse velocity wave which is 

propagating on the rectangle S  at the azimuthal angle   to the x-axis. Then 

   2 2

b b x yk k k   k  (25) 

and 

        cos  and sinx b y bk k k k     , (26) 

where  bk   has been shown as a function of the azimuthal angle   because it will in some 

cases depend on the direction of propagation, as is the case for a freely propagating wave on an 

orthotropic panel. 

The weighted average of the impedance over azimuthal angle with weighting function

 w   is 

      
2 2

0 0

/azz w z d w d

 

       . (27) 

If  w   and  bk   are symmetrical functions about the x and y axes, the ranges of integration 

over the azimuthal angle can be reduced to 0 to π/2 radians by symmetry. If  w   and  bk   are 

constant functions of azimuthal angle and the rectangle S  is a square, the ranges of integration 

over the azimuthal angle can be reduced to 0 to π/4 radians by symmetry. The weighting function

 w   can be used to account for the fact that the wave impedance of an orthotropic panel varies 

with the azimuthal angle of propagation. 
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If the transverse velocity wave is forced by a plane sound wave incident from either side 

of the panel with an incidence angle of   to the normal of the surface S  and an azimuthal angle 

of   to the x-axis, then 

    sinbk k   (28) 

is constant as a function of the azimuthal angle  , and 

        sin cos  and sin sinx yk k k k     . (29) 

FIG. 2 and FIG. 3 show the numerically calculated real part and imaginary part 

respectively of the normalised surface averaged and azimuthally averaged specific radiation 

wave impedance as a function of the ratio   of the bending wave number kb of a square panel of 

side length 2e, mounted in an infinite rigid baffle, to the wave number k of sound in the medium 

into which the panel is radiating. The legend shows the value of ke. 

The incident diffuse sound field forced radiation impedance is the average of z  over all 

solid angles of incidence as shown in the following: 

  
/2

0

sinavz z d



   . (30) 

III. NUMERICAL ACCURACY 

Thomasson (1982) used Eqs. (22) and (24) to tabulate, to nearest 0.01, the real and 

imaginary parts of the azimuthally averaged impedance of a square panel. The tabulated data is 

presented for values of ke  in half octave steps from 0.25 to 64 and values of   in 15° increments 

from 0 to 90° in his Table I. To obtain the azimuthal average, Thomasson replaced Eq. (27) 

where  w   is equal to one with an average of the values at   equal to 0°, 15°, 30° and 45°. For 

32ke  , values at   equals 70°, 80° and 85° and for 64ke  , values at   equals 80° and 85° 

were read from Thomasson’s Fig. B3. MATLAB’s adaptive integral functions were used to 
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evaluate Eqs. (12) and (27) with  w   equal to 1 for comparison with Thomasson’s results. 

MATLAB’s default settings were used in all cases. The real results tabulated by Thomasson 

were greater than the MATLAB results by between 0.0067 and -0.0181. The mean and standard 

deviation of the differences were 0.0001 and 0.036. If the results read from Thomasson’s graph 

were removed, the lower limit became -0.0049. Thomasson’s imaginary results were greater than 

the MATLAB results by between 0.0147 and -0.0807. The mean and standard deviation of the 

differences were -0.0008 and 0.0082. If the results read from Thomasson’s graph were removed, 

the lower limit became -0.0056. Given that Thomasson’s results were rounded to the nearest 

0.01, this was a satisfactory result. The differences in excess of Thomasson’s maximum rounding 

error of 0.005 were probably due to his averaging of the results for four azimuthal angles rather 

than integrating over azimuthal angle. 

Sato (1973) used Eq. (22) to tabulate the real part of the azimuthally averaged 

impedance of a square to the nearest 0.1 dB for values of ke  of 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 12, 

16, 24, 32, 48 and 64 and values of   in 15° increments from 0 to 90° in his Table 1. He also 

graphed results for values of ke  in octave steps from 2 to 64 and values of   in 5° increments 

from 0 to 90° in his Fig. 4. Equations (12) and (27) with  w   equal to 1 were evaluated with 

the adaptive integral functions of MATLAB using their default settings and compared with 

Sato’s results. Sato’s real results were greater than the MATLAB results by between 0.14 and -

0.24dB. The mean and standard deviation of the differences were 0.03 and 0.07dB. If the results 

read from Sato’s graph were removed, the lower limit became -0.15dB. Given that Sato’s results 

were rounded to the nearest 0.1dB, this was a reasonable result. 

Sato (1973) used Eqs. (22) and (30) to tabulate the real part of the incident diffuse sound 

field forced radiation impedance to the nearest 0.01 dB for values of ke  of 0.5, 0.75, 1, 1.5, 2, 3, 
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4, 6, 8, 12, 16, 24, 32, 48 and 64 in his Table 1. Eqs. (12), (27) with  w   equal to 1, and 

Eq. (30) were evaluated with the adaptive integral functions of MATLAB using their default 

settings and compared with Sato’s results. Sato’s real results were greater than the MATLAB 

results by between 0.050 and -0.081dB. The mean and standard deviation of the differences were 

-0.029 and 0.39dB. While these differences are significantly bigger than Sato’s maximum 

rounding error of 0.005dB, they are too small to be of any practical significance. It should be 

noted that it took nearly four hours to calculate the real and imaginary parts of the impedance for 

the 15 values of ke . This is because four nested integrals need to be evaluated. The results for 

the two smallest values of ke  only took about one and half minutes to calculate, but the time 

required for a solution to be calculated increased as ke  increased. This shows the importance of 

having approximations for the impedance. 

A comparison was made between the numerical results of Sato (1973) and Thomasson 

(1982) for the real part of the impedance across those values of ke  and incidence excitation 

angle   for which they had both calculated results. The results from Sato (1973) were greater 

than those from Thomasson (1982) by between 0.145 and -0.234dB. The mean and standard 

deviation of the differences were 0.019 and 0.068dB. If the values that had to be read from 

graphs were removed, the lower limit became -0.131dB and the upper limit remained unchanged. 

Stenzel (1952) tabulated to five decimal places the real and imaginary parts of the 

impedance of rectangles with side length ratios of /b a  equal to 0.1, 0.2, 0.5 and 1 for the 

normally incident excited case ( 0  , 0bk   or 0  ). The calculations were made for values 

of ka  from 0.5 to 5 in steps of 0.5. For the real part, the calculations were also made for ka  

equal to 6. Stenzel’s real results were greater than the MATLAB results by between 0.00084 and 

-0.00318. The mean and standard deviation of the differences were 0.00006 and 0.00050. 
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Stenzel’s imaginary results were greater than the MATLAB results by between 0.001916 and -

0.00081. The mean and standard deviation of the differences were 0.00051 and 0.00304. 

IV. APPROXIMATIONS 

If 1bk R   and 1kR   then the exponential function in Eq. (9) is approximately 1 and 

the imaginary part of the Green’s function in Eq. (9) is approximately  / 2jk  . Making these 

approximations in Eq. (9) and performing the integrals gives 

  
2 22

Re  if 1, 1, 1, 1
2

b b

k S k ab
z ka kb k a k b

 
      . (31) 

It should be noted that equation (31) does not depend on the angle of incidence, azimuthal angle 

or the shape of the surface S  or if S  is a rectangle on the ratio /b a . 

If 1ka   and 1kb   then the product of the sinc squared functions in Eq. (20) has a 

sharp maximum at the point    , / , /x y x yk k k k   . Providing that the location of this 

maximum is not too close to the singularity on the unit circle 
2 2 1x y   , the integrals in 

Eq. (20) can be approximated by setting the square root to its value at this location. The integrals 

can then be evaluated by using integral number 3.821.9 of Gradshteyn and Ryzhik (1965). This 

gives 

 

 
 

 
 

2 2 2 2

2 2 22

22 2

2 2 2 2

2 2 22

22 2

1 1 1
=  if + <  

1
11

= =  if + >
1

11

b x y

y bx

b x y

y bx

k k k k
k kk

kk k
z

j j j
k k k k

k kk

kk k


 


 


 

  


 
 
 
  


. (32) 

The first line of Eq. (32) agrees with Eq. (7.6) of Leppington et al. (1982). Leppington et 

al. (1982) have also shown that the first line of Eq. (32) requires   min , 1 1k a b   . 
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Eq. (32) does not depend on a  or b , and if as will often be the case  bk   is constant as a 

function of  , it does not depend on the azimuthal angle  . Note as indicated above, the correct 

sign of the square root needs to be chosen. If Eq. (29) applies then Eq. (32) becomes 

 
 

1
 if 

cos 2
z





  . (33) 

A pair of equations are presented that govern how close   can be to / 2  , whilst still 

retaining sufficient accuracy. According to Davy (2009), Eq. (33) and hence the first line 

Eq. (32) are approximately correct if 

 
 

 
2 22

2

2 2 2
1 1 1 cos min ,1

2

y bx
k kk

g
k k k ke

 
 

 
          

 
, (34) 

where g  equals 1.3. This suggests that the second line of Eq. (32) is approximately correct if 

 
 2 22

2

2 2 2
1 1 1

2

y bx
k kk

h
k k k ke

 
       . (35) 

Numerical evaluation shows that h  should be set to 1.7 for the real part of the second line of 

Eq. (32) and to 1.6 for the imaginary part of the second line of Eq. (32) when using Eq. (35). 

If 1ka  , 1kb  , / 2   and Eq. (29) applies, Thomasson (1982) has shown that 

approximately 

  

 
 

 
 

 
 

 
 

tan2 2 1
1 1  if tan

3 5 cos
/ 2

tan2 2 1
1 1  if tan

3 5 sin

ka a b
j

b a

z

kb b b
j

a a




 
 




 

  
    

   
  

 
   

  

. (36) 

The real part of Eq. (36) is the same as Eq. (6.25) of Leppington et al. (1982). Notice that 

Eq. (36), unlike Eqs. (31), (32) and (33), does depend on the azimuthal angle   and the ratio of 
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the length of the sides of the rectangle /b a . According to Eqs. (7.9) and (7.10) of Leppington et 

al. (1982), the azimuthal average of Eq. (36) is 

      
 

 

min ,
/ 2 1 min ,

max ,
av

a b
z j k a b L

a b
 

 
     

 
, (37) 

where 

         
1 3/4 3/4

2 2 2 2

0

4
5 1

15

x
L x t t x x t dt

 



     . (38) 

According to Leppington et al. (1982), over the range 1/ 5 1x  , the following approximation 

has an error of less than 4%. 

   0.5 0.15L x x  . (39) 

Thomasson (1982) has shown that if 1/ 4 / 4b a  , the azimuthal average of Eq. (36) 

can be approximated to within 3% by 

    
2 2

/ 2 0.9616 1
3

av

ke
z j 


   , (40) 

where 

 2 4 / 4 / ( )e S U ab a b   . (41) 

S  is the area of the rectangle and U  is the perimeter of the rectangle. This compares well with 

Eq. (27) of Davy (2009), which is 

  
2 2

Re / 2 0.124
3

av

ke
z  


     . (42) 

Thomasson (1982) gave approximations for 0.25ke   and for 64ke  . For 

0.25 64ke   he gave numerically calculated values for a square at half octave intervals. The 

approximations from Thomasson (1982) are as follows: 

     
221/ cos 2 sin / /  if 64 where 0.956avz j ke ke ke           , (43) 
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  22 / 2 ( / ) ( / ) /  if 0.25avz k ab j k bH a b aH b a ke     , (44) 

where 

      2 2( ) ln 1 1 1 / 3H q q q q q      . (45) 

There are typographical errors in Eqs. (65) and (67) from Brunskog (2012) which are his 

versions of version of Eqs. (43) and (45). The square root sign in the denominator of Eq. (65) 

from Brunskog (2012) should include all terms in the denominator and the last +q in Eq. (67) 

from Brunskog (2012) should be -1. For a square panel Eq. (44) becomes 

  
2

2 / 0.946  if 0.25avz ke jke ke   . (46) 

Equating the area of the square to the area of the hemisphere, 2 24 2e r  and 2 /r e 

. Putting these values into Eq. (4) and assuming that  
2

1kr   gives 

      
2 2 2

2 / 2 / 2 / 0.798  if 1avz ke jke ke jke kr       . (47) 

This approach gives the correct real part of Eq. (46), but the constant in the imaginary 

part is slightly in error. The real parts of Eqs. (44), (46) and (47) also agree with Eq. (31). For 

1ke  , Eq. (43) shows the  1/ cos   behaviour predicted by Eq. (1). For / 2   radians 

(90°) and  
2

1ke  , the real and imaginary parts of Eq. (43) are both positive and 

approximately equal. For   not near / 2  radians (90°) and 1ke  , the imaginary part of 

Eq. (43) is very much less than the real part. 

The second line of Eq. (32) indicates that the real part of z  is approximately zero if 

 2 2 2 2+ >b x yk k k k  . While the real part is small compared to the imaginary part, it is not actually 

zero. Leppington et al. (1982) have evaluated the azimuthally average normalised radiation 

impedance for the case of standing waves of the form 
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    0( , ,0) sin sinx yu x y u k x a k y b          (48) 

rather than for the travelling waves described by Eq. (5). The standing wave of Eq. (48) can be 

expressed as the product of the sum of two waves travelling in opposite directions parallel to the 

x-axis with the sum of two waves travelling in opposite directions parallel to the y-axis. This 

formulation means that the integrand whose integral is approximated by Leppington et al. (1982) 

is now the sum of four terms rather than just the single term of the integrand in this paper. The 

phase of the four travelling waves, which is controlled by the boundary conditions of the panel, 

is known to influence the real part of the impedance when   is greater than one. Because of the 

extra terms in the integrand, Eq. (7.7) of Leppington et al. (1982) is used without its natural 

logarithm term. 

  
 

  3/2
2

2
Re  if  1 and min , 1 1

1
avz k a b

ke
 

 
   


 (49) 

where 

 

2 2

x yb
k kk

k k



  . (50) 

The appearance of e  in Eq. (49) as well as in Eq. (40) shows the importance of e  as a measure 

of the size of a rectangular panel. 

V. COMBINED FORMULAE 

Davy (2009) combined high and low frequency approximations for the real part of the 

averaged normalised specific forced radiation wave impedance which is also equal to the 

radiation efficiency. The aim of this paper is to combine the low and high frequency 

approximations from Thomasson (1982) in order to cover the whole frequency range. This would 

give a formula for the imaginary part which is not provided by Davy (2009). 
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The case when   is less than or equal to 1 is considered first. Following Davy (2009), the 

low Lx  and Hx  approximations are combined using the following formula 

 
1

1 1
n

n n

L H

x

x x





. (51) 

The real part of the specific forced radiation wave impedance is given by the x  in Eq. (51) 

when Lx  and Hx  are the real parts of Eqs. (44) and (43) respectively, and 2n  . 

The imaginary part is more complicated. For a normally incident exciting wave ( 0  ), 

Eq. (43) gives a zero imaginary part. Although it is small for large values of ke , the imaginary 

part is not completely zero. A straight line of best fit was applied in the log-log domain to the 

numerical calculations of Thomasson’s (1982) for the imaginary part for a normally incident 

exciting wave ( 0  ) versus ke  for values of ke  from 1.41 to 64. This produced the following 

equation: 

  
0.67

Im 0  if 1.41z ke
ke

      . (52) 

Note that apart from the 0.67 scaling factor, this is in agreement with the high frequency 

asymptotic behaviour of the imaginary part of Eq. (4). The imaginary part of the specific forced 

radiation wave impedance for a normally incident exciting wave ( 0  ) for all values of ke  is 

obtained by using Eq. (51) with 3n  . The low frequency component Lx  is the imaginary part of 

Eq. (44) and the high frequency component Hx  is given by Eq. (52). The value of the imaginary 

part for any angle of incidence is calculated as the maximum of the imaginary part for the 0   

case as described in this paragraph and the imaginary part of Eq. (43). 

For the case when   is greater than one, the radiation impedance was approximated by 

using the second line of Eq. (32) to calculate the imaginary part and Eq. (49) to calculate the  real 
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part when Eq. (35) is satisfied. If Eq. (35) is not satisfied, the radiation impedance was calculated 

by interpolating between   equals one and the value of   given by solving Eq. (35) with the 

equality sign. Note that the   equals one case is the   equals / 2  radians or 90° case. 

VI. SUMMARY OF COMBINED APPROXIMATE CALCULATION METHOD 

From Eq. (2) calculate 

  sinbk

k
   , (53) 

where the second equality only applies if bk k . From Eq. (41) calculate 

 
2kab

ke
a b




. (54) 

If 1   calculate 

 
0.956

ke
  . (55) 

From Eq. (43) calculate 

 

 
2

1

1
h hr hiz z jz

j 
  

 

. (56) 

From Eq (44) calculate 

 
22 2

l lr li

k ab k a b
z z jz j bH aH

b a 

    
        

    
, (57) 

where from Eq. (45) 

  
2

2 1 1
( ) ln 1

3

q
H q q q

q

 
    . (58) 

Using Eq. (51) with 2n   calculate 

 

2 2

1

1 1
r

lr hr

z

z z





. (59) 

From Eq. (52) calculate 

 
0

0.67
hiz

ke
   (60) 

Using Eq. (51) with 3n   calculate 
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0

3
3 3

0

1

1 1
i

li hi

z

z z





. (61) 

Calculate 

  0max ,i i hiz z z . (62) 

Calculate 

 r iz z jz    (63) 

Else if 1  , set 1.7rh   and 1.6ih   and calculate x  where x equals r and i using 

Eq. (35), as follows: 

 
2

1
2

x
x

h

ke


    , (64) 

 where  equals  or x r i . If r  , using Eq. (49) calculate 

 

 
3/2

2

2

1
rz

ke 



. (65) 

If 1 r    calculate the real part mrz  using Eq. (65) with r  . 

Calculate the real part 1rz  as described for the 1   case with 1  . 

Interpolate 

 
   1 1

1

r r mr

r

r

z z
z

  



  



  (66) 

If i  , using Eq. (32) calculate 

 
2

1

1
iz





 . (67) 

If 1 i    calculate the imaginary part miz  using Eq. (67) with i  . 

Calculate the imaginary part 1iz  as described for the 1   case with 1  . 

Interpolate 

 
   1 1

1

i i mi

i

i

z z
z

  



  



 . (68) 



 24 

If 1  , calculate 

 r iz z jz  ,  (69) 

where rz  is given by Eq. (65) or Eq. (66) and iz  is given by Eq. (67) or Eq. (68). 

The area averaged and azimuthally averaged specific radiation wave impedance of a 

finite rectangular panel is given by Eq. (63) or Eq. (69). 

VII. COMPARISON WITH NUMERICALLY CALCULATED VALUES 

Table I and Table II show the amounts in decibels by which the real and imaginary parts of 

the combined approximate method developed in this paper for the forced radiation impedance 

were greater than the numerical calculations from Thomasson (1982) for the real and imaginary 

parts respectively of the specific forced radiation wave impedance of a square panel of side 

length 2e  when   is less than or equal to one. For the real part, the differences are between 0.7 

and -1.0 dB. The mean and standard deviation of the differences were 0.01 and 0.30 dB. For the 

imaginary part, the differences are between 2.3 and -2.6 dB. The mean and standard deviation of 

the differences were -0.31 and 0.90 dB. The extreme differences occur in region of ke equals 2. 

However the imaginary part also has a difference of 1.7 dB for ke equals 64 at an angle of 

incidence of 60°. This difference occurs where the imaginary part is increasing very rapidly from 

a very low value for angles of incidence close to normal to a very large value at grazing angles of 

incidence. 

Table III shows the amount in decibels that the method from Davy (2009) was greater than 

that of the Thomasson (1982) numerical calculations for the real part of the specific forced 

radiation wave impedance of a square panel of side length 2e  when   is less than or equal to 

one. The differences are between 0.4 and -0.6dB. The mean and standard deviation of the 

differences were -0.03 and 0.19dB. Thus the method of Davy (2009) is in slightly better 
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agreement with the numerical calculations of Thomasson (1982) for the real part than the 

formula obtained in this paper by the combining high and low frequency approximations from 

Thomasson (1982). The method Davy (2009) does not predict the imaginary part of the 

impedance. 

Table IV and Table V show the amount in decibels by which the combined approximate 

method developed in this paper was greater than numerical MATLAB calculations for the 

imaginary and real parts of the specific radiation wave impedance of a square panel of side 

length 2e  when 1  . The tabulated data is presented for values of ke  in half octave steps from 

0.25 to 11.31 and values of   in one tenth of a decade steps from 1 to 10. For the imaginary 

part, the differences are between 0.8 and -1.3dB with a mean of 0.02dB and a standard deviation 

of 0.28dB. The real part shows some oscillatory behaviour with differences between 6.2 and -2.4 

dB with a mean of 0.12dB and a standard deviation of 1.09dB. The biggest differences occur 

when the values are very small and thus would not normally be of any practical importance. 

VIII. CONCLUSION 

A combined approximation method for calculating both the real and the imaginary parts of 

the single sided normalized specific forced radiation wave impedance of a finite rectangular 

panel has been derived. For the real part, the approximate method is between 0.7dB higher and -

1dB lower than numerical calculations, when the ratio of the transverse wave number in the 

panel to the wave number in the medium surrounding the panel   is less than or equal to one. 

For the imaginary part, the approximate method is between 2.3dB higher and -2.6dB lower than 

numerical calculations when   is less than or equal to one. The method for the real part when   

is less than or equal to one is not quite as good as the approximate method for the real part when 

  is less than or equal to one developed previously by Davy (2009) which is between 0.4dB 
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higher and -0.6dB lower than the numerical calculations. However, unlike the method from Davy 

(2009), the method developed in this paper can also calculate the imaginary part. 

For the imaginary part, the approximate method is between 0.8dB higher and -1.3dB lower 

than numerical calculations when   is greater than or equal to one. For the real part, the 

approximate method is between 6.2dB higher and -2.4dB lower than numerical calculations, 

when   is greater than or equal to one. 
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TABLES 

Table I. Difference in decibels between the combined approximate method developed in this 

paper and the numerical calculations of Thomasson (1982) for the real part of the specific forced 

radiation wave impedance of a square panel of side length 2e  when 1  . 

μ 0.000 0.259 0.500 0.707 0.866 0.940 0.966 0.985 0.996 1.000 

ke 0° 15° 30° 45° 60° 70° 75° 80° 85° 90° 

0.25 -0.1 -0.1 -0.1 -0.1 -0.1  -0.1   -0.1 

0.35 -0.1 -0.1 -0.1 -0.1 -0.2  0.4   0.4 

0.50 0.0 0.0 0.0 0.3 0.3  0.2   0.2 

0.71 0.0 0.0 0.1 0.2 0.3  0.3   0.5 

1.00 -0.3 -0.2 -0.1 0.2 0.4  0.5   0.5 

1.41 -0.7 -0.6 -0.2 0.2 0.4  0.6   0.6 

2.00 -1.0 -0.8 -0.4 0.2 0.5  0.7   0.7 

2.83 -0.4 -0.5 -0.5 0.0 0.4  0.5   0.5 

4.00 0.1 -0.1 -0.5 -0.3 0.2  0.4   0.4 

5.66 -0.2 -0.1 -0.1 -0.5 -0.1  0.3   0.3 

8.00 -0.1 0.0 0.0 -0.3 -0.3  0.2   0.2 

11.31 -0.1 0.0 0.0 0.0 -0.5  0.1   0.2 

16.00 0.0 0.0 0.0 -0.1 -0.4  0.0   0.1 

22.63 0.0 0.0 0.0 0.0 -0.1  -0.2   0.1 

32.00 0.0 0.0 0.0 0.0 -0.1 -0.4 -0.4 0.0 0.1 0.1 

45.25 0.0 0.0 0.0 0.0 0.0  -0.5   0.0 

64.00 0.0 0.0 0.0 0.0 0.0  -0.4 -0.3 0.1 0.0 
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Table II. Difference in decibels between the combined approximate method developed in this 

paper and the numerical calculations from Thomasson (1982) for the imaginary part of the 

specific forced radiation wave impedance of a square panel of side length 2e  when 1  . 

μ 0.000 0.259 0.500 0.707 0.866 0.940 0.966 0.985 0.996 1.000 

ke 0° 15° 30° 45° 60° 70° 75° 80° 85° 90° 

0.25 0.1 0.1 0.1 0.1 0.1  0.1   0.1 

0.35 0.2 0.2 0.2 0.2 0.3  0.3   0.3 

0.50 0.4 0.4 0.4 0.4 0.5  0.5   0.5 

0.71 0.3 0.3 0.4 0.5 0.6  0.6   0.6 

1.00 -0.4 -0.4 -0.3 -0.2 -0.2  -0.1   -0.1 

1.41 -1.4 -1.4 -1.5 -1.6 -1.6  -1.6   -1.5 

2.00 -0.9 -1.4 -2.3 -2.6 -1.7  -1.1   -1.0 

2.83 2.3 0.3 -2.6 -2.5 -1.5  -0.9   -0.7 

4.00 -0.5 0.2 -1.7 -2.2 -1.4  -0.7   -0.5 

5.66 1.2 -0.7 -1.0 -1.4 -1.4  -0.6   -0.4 

8.00 -0.3 0.2 -2.0 0.3 -1.4  -0.6   -0.2 

11.31 -0.1 -0.1 -1.0 0.3 -0.8  -0.6   -0.2 

16.00 0.2 0.2 -1.2 -0.1 0.9  -0.7   -0.1 

22.63 -0.1 -0.1 -0.9 0.2 1.6  -0.9   -0.1 

32.00 0.2 0.2 -1.2 0.7 0.5 0.6 -0.8 -0.5 -0.1 -0.1 

45.25 -1.3 -1.3 -0.9 0.2 1.2  -0.2   0.0 

64.00 0.2 0.2 0.6 0.0 1.7  1.4 -0.8 -0.1 0.0 
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Table III. Difference in decibels between the method of Davy (2009) and the numerical 

calculations of Thomasson (1982) for the real part of the specific forced radiation wave 

impedance of a square panel of side length 2e  when 1  . 

μ 0.000 0.259 0.500 0.707 0.866 0.940 0.966 0.985 0.996 1.000 

ke 0° 15° 30° 45° 60° 70° 75° 80° 85° 90° 

0.25 0.0 0.0 0.0 0.0 -0.1  -0.1   -0.2 

0.35 0.0 0.0 -0.1 -0.1 -0.2  0.3   0.2 

0.50 0.2 0.2 0.2 0.4 0.2  0.1   -0.2 

0.71 0.3 0.3 0.4 0.4 0.3  -0.1   -0.2 

1.00 0.2 0.2 0.2 0.3 0.2  -0.1   -0.4 

1.41 -0.2 -0.2 0.0 0.1 0.1  0.0   -0.4 

2.00 -0.6 -0.6 -0.4 -0.2 0.0  0.1   -0.2 

2.83 -0.2 -0.2 -0.6 -0.6 -0.3  -0.1   -0.2 

4.00 0.2 0.1 -0.2 -0.4 -0.3  -0.1   -0.2 

5.66 -0.1 0.0 0.0 -0.1 -0.3  -0.1   -0.1 

8.00 0.0 0.0 0.1 -0.1 -0.2  -0.1   -0.1 

11.31 0.0 0.0 0.0 0.1 0.0  -0.1   -0.1 

16.00 0.0 0.0 0.0 0.0 -0.1  -0.2   0.0 

22.63 0.0 0.0 0.0 0.0 0.1  -0.2   0.0 

32.00 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.1 0.0 

45.25 0.0 0.0 0.0 0.0 0.0  0.0   0.0 

64.00 0.0 0.0 0.0 0.0 0.0  -0.1 0.0 0.0 0.1 
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Table IV. Difference in decibels between the combined approximate method developed in this 

paper and numerical calculations for the imaginary part of the specific forced radiation wave 

impedance of a square panel of side length 2e  when 1  . 

μ 1.00 1.26 1.58 2.00 2.51 3.16 3.98 5.01 6.31 7.94 10.00 

ke            

0.25 0.1 0.2 0.2 0.3 0.4 0.5 0.8 0.5 0.1 -0.1 0.0 

0.35 0.3 0.3 0.2 0.3 0.3 0.4 0.4 0.0 -0.1 0.0 0.1 

0.50 0.5 0.4 0.4 0.3 0.3 0.4 0.0 0.0 0.1 0.1 0.0 

0.71 0.6 0.5 0.4 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.0 

1.00 -0.1 -0.1 -0.1 0.0 0.1 -0.1 0.0 0.0 0.0 0.0 0.0 

1.41 -1.4 -1.3 -0.9 -0.1 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 

2.00 -1.0 -1.1 -0.6 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

2.83 -0.7 -0.9 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4.00 -0.5 -0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5.66 -0.3 -0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8.00 -0.2 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

11.31 -0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

  



 33 

Table V. Difference in decibels between the combined approximate method developed in this 

paper and numerical calculations for the real part of the specific forced radiation wave 

impedance of a square panel of side length 2e  when 1  . 

μ 1.00 1.26 1.58 2.00 2.51 3.16 3.98 5.01 6.31 7.94 10.00 

ke            

0.25 0.1 0.1 0.1 0.1 0.2 0.4 0.8 -0.3 -1.9 -2.4 -0.8 

0.35 0.2 0.1 0.0 -0.2 -0.3 -0.3 -0.9 -2.2 -2.0 1.5 6.2 

0.50 0.3 0.1 -0.1 -0.3 -0.6 -1.3 -2.2 -1.0 4.3 1.3 -2.4 

0.71 0.4 0.2 0.1 -0.2 -0.9 -1.8 0.3 4.0 -1.3 -0.4 0.9 

1.00 0.5 0.5 0.5 0.2 -1.3 0.8 1.6 -1.5 1.9 -1.4 1.5 

1.41 0.7 0.8 1.0 -0.3 0.3 0.8 -0.8 0.8 -0.4 -0.4 -0.3 

2.00 0.8 1.0 1.0 -0.3 1.2 -1.0 1.0 -0.3 -0.8 -0.7 0.6 

2.83 0.6 0.9 0.0 1.1 -0.7 0.3 0.5 0.4 0.5 -0.4 -0.4 

4.00 0.5 1.0 0.7 -0.7 0.5 0.6 0.6 -0.3 0.6 0.5 -0.1 

5.66 0.3 1.2 0.3 0.7 0.5 0.3 -0.3 -0.4 0.2 0.0 -0.3 

8.00 0.3 0.0 -0.3 -0.1 0.3 -0.1 0.0 -0.1 0.0 0.1 0.1 

11.31 0.2 0.9 -0.1 0.1 -0.1 0.2 0.1 -0.1 0.0 0.1 -0.1 
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FIGURE CAPTIONS 

FIG. 1. (Color online) The geometry of the problem considered when the radiating surface S is a 

rectangle. Note that if |kb| is greater than |k|,   does not exist as a real angle.  

FIG. 2. (Color online) The numerically calculated real part of the normalised surface averaged 

and azimuthally averaged specific radiation impedance as a function of the ratio   of the 

bending wave number kb of a square panel, of side length 2e mounted in an infinite rigid baffle, 

to the wave number k of sound in the medium into which the panel is radiating. The legend 

shows the value of ke.  

FIG. 3. (Color online).The numerically calculated imaginary part of the normalised surface 

averaged and azimuthally averaged specific radiation impedance as a function of the ratio   of 

the bending wave number kb of a square panel, of side length 2e mounted in an infinite rigid 

baffle, to the wave number k of sound in the medium into which the panel is radiating. The 

legend shows the value of ke.  
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